BLACK & VEATCH CORPORATION

175 REGENCY WOODS PLACE, SUITE 300 +1 919-462-7401 | boldsne@bv.com

March 21, 2022

Site ID: 150111

Site Address: 1460 Route 9, Wappingers Falls, NY 12590-4425

To Whom It May Concern:

The purpose of this letter is to certify that a structural analysis was performed for the existing roof members that are to support the solar PV panels, racking, and ballast weight, if applicable, as shown in the attached calculation document. The calculations were performed in accordance with the edition of the Building Code of New York State that is currently in effect in the jurisdiction where the noted site is located. The design criteria upon which the calculations are based on can be found within the attached calculation document.

Based on the results and findings of this structural analysis, it can be certified that the individual existing roof members that support the PV panels, and the individual roof members as described in the attached report, are adequate to support the design loads as required by the applicable building code and design standards.

Should you have any questions or comments, please feel free to contact Black & Veatch.

Very truly yours,

BLACK & VEATCH CORPORATION

Nathaniel E. Bolde, S.

Nathaniel Bolds P.E.* Civil/Structural Engineer

* Registered in New York

cc: JP Morgan

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

Date Signed: 03/21/2022 License Expires: 04/30/2023

CALCULATION RECORD

	Confidential a	and Proprietary	Business Information of Black	& Veatch		
Client Name		JP Morgan &		Page	1 of	43
Project Nan	ne:	Rooftop Sola			o.: 400134	
Calculation	alculation Title: Structural Evaluation of Existing Roof fe			oposed Solar PV A	rray	
Calculation	No./File No.:	10.00.15011	1			
Verification	Method:	7	Check and Review		Alternate Calculati	ons
Objective: The purpos	e of this calcul	ation is to eval	uate existing building structure	for addition of roof	top PV solar module.	
		Unverifie	d Assumptions Requiring S	ıbsequent Verifica	ation	
No.			Assumption		Verified By	Date
Refer to Pa	ge	of thi	s calculation for additional ass	umptions		
		This So	ection Used for Software-Ge	nerated Calculatio	ns	
Program N	lame/Version:	Microsoft Exc	cel 2016, Mathcad Prime 5.0.0.	0		
f a nonstan	dard B&V app	lication is used	, the approved deviation perm	t number shall be I	isted below and the a	proved
deviation pe	ermit attached	to the calculati	on as a reference.			

	Review and Approval					
Revision	Prepared By*	Date	Verified By*	Date	Approved By*	Date
0	Charloemphon T.	5/11/2020	Amir Tabarestani	5/12/2020	Nathaniel E. Bolds, Jr.	3/21/2022

^{*}Signature required.

Company policy requires that copyright permissions for use of published materials be verified using Copyright Clearance Center's online resource at www.copyright.com, and private materials like vendor publications be verified by contacting the owner of the material and obtaining written permission, or verifying permission through previous contractual agreement.

	Client: JP Morgan & Chase		Computed By: Ch	narloempho	n T.	
B	Project Name: Rooftop Solar Program Tranche No: 10		Date: 5/11/2020			
-4	Project No: 400127	File No.: 10.00.150111	Verified By:			
0	Title: Structural Evaluation of Existing Roof for Proposed Solar PV Array		Date:			
BLACK & VEATO	н		Calculation Page No:	2	of	43
			Load Comparison IBC 2018 Version:	2.3		

TABLE OF CONTENTS	<u>Page No.</u>
1.0 PURPOSE OF CALCULATION	3
2.0 SUMMARY OF CONCLUSIONS	3
3.0 REFERENCES	4
4.0 ROOF 1 LOAD ANALYSIS (150111)	4

LIST OF APPENDICES	Page No.
APPENDIX A: ASCE7 HAZARDS REPORT	14
APPENDIX B: AURORA SHADE REPORT (SOLAR PANEL LAYOUT)	19
APPENDIX C: REFERENCE DRAWINGS	23
APPENDIX D: SITE INSPECTION DATA	29
APPENDIX E: RACKING DESIGN REPORT	32
APPENDIX F: SOLAR ARRAY WEIGHT SUMMARY	41
APPENDIX G: DETAILED MEMBER CHECK	42
APPENDIX H: REFERENCE CATALOG / BROCHLIRE	43

	Client: JP Morgan & Chase	Computed By: Charloemphon T.				
B.	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/	11/2020		
	Project No: 400127	File No.: 10.00.150111	Verified By:			
0	Title: Structural Evaluation of Existing	Roof for Proposed Solar PV Array	Date:			
BLACK & VEATCH	1		Calculation Page No:	3	of	43
	_		Load Comparison IBC 2018 Version:	2.3		

1.0. PURPOSE OF CALCULATION

The purpose of this calculation is to evaluate the existing building structure for addition of rooftop PV solar array.

2.0. SUMMARY OF CONCLUSIONS

Per IEBC 2018 "Section 502.4 - Existing structural elements carrying gravity load" and "Section 502.5 - Existing structural elements carrying lateral load", the gravity and lateral structural systems are permitted to remain unaltered. Addition of Rooftop PV Solar Array is acceptable.

3.0. REFERENCES

- 1. Local Building Code: 2020 Building Code of New York State
- 2. International Building Code: International Building Code 2018
- 3. International Existing Building Code 2018
- 4. International Fire Code 2018
- 5. UNIRAC Code Compliant Engineering Letter for NY State
- 6. ASCE7-16, Minimum Design Loads for Buildings and Other Structures
- 7. Report SEAOC PV2-2017, Wind Design for Solar Arrays
- 8. Report SEAOC PV1-2012, Structural Seismic Requirements and Commentary for Rooftop Solar Photovoltaic Arrays
- 9. 2016 SEAOC Convention Proceedings Page 922 to 929, Wind Loads on Rooftop Photovoltaic Panel Systems Installed Parallel to Roof Planes
- 10. Michael O'Rourke et.al, Snow Loads on Solar-Paneled Roofs
- 11. NDS 2018, National Design Specification for Wood Construction
- 12. Supplement NDS 2018, National Design Specification Design Values for Wood Construction
- 13. Design of Wood Structures, 6th Edition
- 14. AISC Steel Construction manual, 14th Edition, 2011
- 15. 75 Year Steel Joist Manual by Steel Joist Institute
- $16. \ B\&V\ Calculation\ 284980.01.01.862084.03\ Standard\ Pitched\ Roof\ Racking\ Plus\ Module\ Dead\ Load\ Rev.\ 0$
- 17. (Not Used)
- 18. S-5-U & S-5-U Mini S5! Clamp Load Test Results
- 19. Versabracket S5! Load Test Results
- 20. Portland Bolt Website ASTM F593, https://www.portlandbolt.com/technical/specifications/astm-f593/
- 21. National Design Specification for Wood Construction, 2018 Edition
- 22. Supplement NDS Design Values for Wood Construction, 2018 Edition
- 23. Quick Mount PV Tile Replacement Mount State Compliance Letters
- ${\bf 24. \ Quick\ Mount\ PV\ TRM\ System\ for\ use\ with\ Everest\ CrossRail\ 48\ PV\ Panel\ Mounting\ System}$
- 25. Quick Mount PV Tile Replacement Mount Installation Instructions
- 26. Quick Mount PV QBase Mount System State Compliance Letters
- 27. Quick Mount PV QBase Mount System for use with Everest CrossRail 48 PV Panel Mounting System
- 28. Quick Mount PV QBase Universal Tile Mounting Installation Instructions
- 29. Quick Mount PV QHook Mount System State Compliance Letters
- 30. Quick Mount PV QHook Mount System for use with Everest CrossRail 48 PV Panel Mounting System
- ${\bf 31.} \ {\bf Quick\ Mount\ PV\ QHook\ Mounting\ Installation\ Instructions}$
- 32. Laboratory Load Test of the QMHLS with 6061 Base Plate
- 33. Laboratory Load Test of the QMHSS with 6061 Base Plate
- 34. Laboratory Load Test of the QMHLB with 6061 Base Plate 35. Laboratory Load Test of the QMHSB with 6061 Base Plate
- 36. U-Anchor Testing & Engineering Reports (U-Anchor 2400 & 2600)
- 37. Structural Certification of IronRidge Knockout Tile Roof Attachment

	Client: JP Morgan & Chase		Computed By: Ci	harloemph	on T.	
= 2_	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/	/11/2020		
	Project No: 400127	File No.: 10.00.150111	Verified By:			
0	Title: Structural Evaluation of Exist	ing Roof for Proposed Solar PV Array	Date:			
& VEATCH			Calculation Page No:	4	of	43
	•		Load Comparison IBC 2018 Version:	2.3		

ROOF 1 LOAD ANALYSIS (150111) MAIN BUILDING

Client:	JP Morgan & Chase		Computed By:	Charloemp	hon T.	
Project Name:	Rooftop Solar Program	Tranche No: 10	Date:	5/11/2020		
Project No:	400127	File No.: 10.00.150111	Verified By:			
Title:	Structural Evaluation of Existing	ng Roof for Proposed Solar PV Array	Date:			
			Calculation Page No:	5	of	43
			Load Comparison IBC 2018 Version:	2.3		

4.0. Site Information

Building ID:	150111			
Project Name:	Wappinger			
Address:	1460 Route 9.	Wappingers Falls.	NY. 12590-4425	

5.0. Building Code and Design Parameters

International Building Code:	International Building Code 2018
Local Building Code:	2020 Building Code of New York State
Structural Risk Category:	II

Wind Load Data		
Wind Speed, V:	113	mph
Exposure Category:	В	
Topographic Factor Kzt:	1.0	

Roof Snow Load D	ata	
Ground Snow Load, Pg:	30.0	
Flat-roof Snow Load, Pf:	21.0	psf
Snow Exposure Factor, Ce:	1.0	
Snow Thermal Factor, Ct:	1.0	
now Load Importance Factor, Is:	1.0	

Seismic Load Data	
Spectral acceleration, Sps:	0.231 g
Seismic Design Category:	В

Roof Characteristi	ics	
Mean Roof Height:	14.50	ft
Roof Angle:	0.0	degrees

6.0. Load Determination

6.1. Existing Roof Dead Load
Roof Dead Load:

D _{roof} :	25.4	psf									
Component:	Membrane	Insulation - 1	Insulation - 2	Deck	Structure	Utilities	Ceiling - 1	Ceiling - 2	Other - 1	Other - 2	Total
Dead Load (psf):	0.7	3		2.5	1	4	1				12.2
Material:	TPO/PVC,	Rigid		Deck, metal, 20	Steel Joist	Standard,	Acoustical				
	Waterproofing	insulation 2-in		gauge	(Assumption if	Mechanical	Fiber board,				
	membrane				specification is	duct allowances	"drop-ceiling"				
					not known)						

6.2. Proposed Solar Array Dead Load
Solar Array dead load including PV modules, racking, ballast (ref. Racking Design Report)
Solar Array Dead Load:
D_{PV}: 6.99

6.3. Existing Roof Design Live Load

Exist Design Roof Live Load: RLL_{exist}: 20.00 psf

6.4. New Design Live Load in Area Occupied by Solar Array
Live load need not be applied in area occupied by solar array.

New Design Roof Live Load:

RLL_new: 0 psf

Client: JP Morgan & Chase		Computed By: Ch	arloempho	on T.	
Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/3	11/2020		
Project No: 400127	File No.: 10.00.150111	Verified By:			
Title: Structural Evaluation of Existing R	toof for Proposed Solar PV Array	Date:			
		Calculation Page No:	6	of	43
		1 1 C	2.2		

6.5. Wind Load on Roof Components and Cladding

ASCE 7-16 WIND LOADS

erenced sections, equations, and tables are found in ASCE 7-16.

Roof Type: Gable Roof Roof Type: Risk Category: Basic Wind Speed: Wind Load Parameters Directionality Factor: Exposure Category: Topographic Factor: Gust-effect Factor: Enclosure Classification: Wind Flow Obstruction: Internal Pressure Coefficient: Boundary Laver Height: 113 0.85 3a. 3b. 3c. 3d. 3e. 0.85 Enclosed 0.18 GCpi Boundary Layer Height: 3-sec gust-speed exponent: Mean Roof Height: 7 14.5 Parapet height:
Horizontal dimension of building:
Roof Angle from Horizontal:
Ground Elevation above sea level: feet feet deg feet 6.5 NA 0 163.4 Ground Elevation Factor: 0.99 Velocity Pressure Exposure Coefficient: 0.70 5. Velocity Pressure at height h: Effective Wind Area: 1300 Zone dimension:

External Pressure Coefficients, GCp (enclosed bldg) or Net Pressure Coefficients, C_N (open bldg)

Wind Pressure on Roof
without overhang (use GCp or GC_N): with overhang (use GCp_oh):

p: (see table) p_oh: (see table)

(ref. Drawings, Site Survey Data, Aurora Layout) Table 1.5-1 Figures 26.5-1A, B, C & D

Table 26.6-1 Section 26.7 Section 26.8, Table 26.8-1 Section 26.11 Section 26.12 Fig. 30.7-1.2,3 Note 2 (for open buildings) Section 26.11, Table 26.13-1

Section 2b-11, I able 2b-15-1
Table 26.10-1
Table 26.10-1
(ref. Drawings, Site Survey Data, Aurora Layout)
(ref. Drawings, Site Survey Data, Aurora Layout)
(measured along wind direction for open buildings. Ref. Fig 30.7-1, 30.7-2, 30.7-3)

Section 26.9

Table 26.9-1: $Ke = e^{-0.0000362 * Zg}$ (where Zg = ground elevation above sea level in ft)

Table 26.10-1 and Table 26.11-1: Kz = 2.01*(z/zg)^{2/3} (Exp B: z = 30 ft min, z = 15 ft min otherwise) Equation 26.10-1: $q_z = 0.00256$ KzKztKdKeV²

For h<=60, a: 10% of least horizontal dimension or 0.4h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft. For h>60, a: 10% of least horizontal dimension ton to less than 3 ft. Figure 30.3-1, 2A to 2H, 3, 4, 5A, 5B, 6, 7 (enclosed) or Figure 30.7-1,2,3 (open)

Equation 30.3-1, 30.5-1: p = qh(GCp - GCpi) [for enclosed and partially enclosed]

Equation 30.9 1; $p = q_0(Gp, -Gpp)$ [for overhangs]

*Cop for roof overhangs include pressure contributions from both upper and lower surfaces equation 30.7-1; $p = q_0(Gp, -Gpp)$ [for open buildings]

Section 30.2.2; $p \Rightarrow 16$ psf (acting in either direction normal to the surface)

								Section 30.2.2, p	>= 10 hsi factii	ig ili either dhe	Lition Horman to	tile surrace)			
A (ft²)	GCp1'-	GCp1-	GCp2-	GCp2e-	GCp2n-	GCp2r-	GCp2'-	GCp3-	GCp3e-	GCp3r-	GCp3'-	GCp1'+	GCp1+	GCp2+, 2'+	GCp3+, 3
1300	-0.40	-1.00	-1.40	0.00	0.00	0.00	0.00	-1.40	0.00	0.00	0.00	0.20	0.20	0.63	0.63
A (ft²)	GCp_oh1'-	GCp_oh1-	GCp_oh2-	GCp_oh2e-	GCp_oh2n-	GCp_oh2r-	GCp_oh3-	GCp_oh3e-	GCp_oh3r-						
1300	-1.00	-1.00	-1.10	0.00	0.00	0.00	-1.10	0.00	0.00						
Α			Clear Wind Flo	w					Obstructed Wi	nd Flow			1		
(ft²)	C _N 1-	C _N 2-	C _N 3-	C _N 1+	C _N 2+	C _N 3+	C _N 1-	C _N 2-	C _N 3-	C _N 1+	C _N 2+	C _N 3+			
1300				<u> </u>									4		

	~			Clear Willia Ho	"					Obstructed wil	IU FIOW		
L	(ft ²)	C _N 1-	C _N 2-	C _N 3-	C _N 1+	C _N 2+	C _N 3+	C _N 1-	C _N 2-	C _N 3-	C _N 1+	C _N 2+	C _N 3+
8	1300												
9													
10													
11													
12													
13													
14													

Enclosed or Partially Enclosed Buildings

A	p1'-	p1-	p2-	p2e-	p2n-	p2r-	p2'-	р3-	р3е-	p3r-	p3'-	p1'+	p1+	p2+, p2'+	p3+, p3'+
(ft ²)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
1300	-16.0	-22.8	-30.6					-30.6				16.0	16.0	16.0	16.0
			8 8												
	<u> </u>	-			-										
A	p_oh1'-	p_oh1-	p_oh2-	p_oh2e-	p_oh2n-	p_oh2r-	p_oh3-	p_oh3e-	p_oh3r-	İ					
(ft ²)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)						
1300	-22.8	-22.8	-24.8				-24.8]					
		10.00000						1		1					

Onen Buildings

			Clear Wind Flo	w					Obstructed Wi	nd Flow		
A	p1-	p2-	р3-	p1+	p2+	p3+	p1-	p2-	p3-	p1+	p2+	p3+
(ft ²)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
1300												

Client: JP Morgan & Chase		Computed By: Ch	arloempho	n T.	
Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/	11/2020		
Project No: 400127	File No.: 10.00.150111	Verified By:			
Title: Structural Evaluation of Exis	ting Roof for Proposed Solar PV Array	Date:			
		Calculation Page No:	7	of	43
		Load Comparison IBC 2018 Version:	2.3		

Equation 26.10-1: $q_z = 0.00256$ KzKztKdKeV²

Fig. 29.4-8: 0.8 for A<=10; 0.4 for A>=100; 1.2-0.4*LOG(A) otherwise.

Velocity Pressure at height h:

Pressure equalization factor:

6.6. Wind Load on Solar Array
This wind load calculation is for low profile arrays, with dimensions such that either ASCE7-16 Section 29.4.3, or ASCE7-16 Section 29.4.4 are applicable.
Referenced sections, equations, and tables in this section are found in ASCE 7-16.

Overall building Length Overall building width Building width normal to wind direction (ref. Drawings, Site Survey Data, Aurora Layout) (ref. Drawings, Site Survey Data, Aurora Layout) (ref. Drawings, Site Survey Data, Aurora Layout) 62.15 62.45 62.15 Effective wind area of element: Components and Cladding Zone dimension: Basic Wind Speed (ASCE7-16): (ref. Drawings, Site Survey Data, Aurora Layout)
Figure 30.3-1, 2A to 2H, 3, 4, 5A, 5B, 6, 7 (enclosed) or Figure 30.7-1,2,3 (open)
Figures 26.5-1A, B, C & D 1300 8.70 113

19.35 psf

Angle of solar panel relative to roof: Panel Chord Length: Sec 29.4.3 angle limit - - -Sec 29.4.3 length limit - - -(ref. Applicable Racking Data) (ref. Applicable Racking Data)

Parapet factor: Sec 29.4.3 γ_p=min(1.2,0.9+h_{pt}/h) Chord factor: 0.80 Sec 29.4.3 y = max(0.6+0.06L, 0.8)

Edge factor for uplift loads (Exposed Panels) Sec 29.4.3: γ_E =1.5 for uplift loads on panels that are exposed and within 1.5Lp from exposed edge. 1.5 YE-_Ex Edge factor for uplift loads (Non Exposed Panels)

 $\gamma_{\rm E}$ =1.0 elsewhere for uplift loads. $\gamma_{\rm E}$ =1.0 for all downward loads. Fig 29.4-7: An = [1000/max(Lb,15)²]A Edge factor for downward loads (all panels) Normalized wind area: 5777.8 Height of gap between panel and roof at lower edge: Height of gap between panel and roof at higher edge: Sec 29.4.3 height limit - - -(ref. Applicable Racking Data) Sec 29.4.3 height limit - - -(ref. Applicable Racking Data) Fig. 29.4-7: Lb =minimum of 0.4*(hW $_{\rm L})^{0.5}$ or h or W $_{\rm S}$ Normalized building length: 12.01

Uplift Wind Pressure
Exposed panels (use GCrn_Exp-):
Non Exposed panels (use GCrn_Nexp-): $\begin{array}{ll} \mbox{Eqn. 29.4-5: p = q}_h\mbox{GCrn} & \mbox{(for panels on flat roofs with }\theta\mbox{<=7deg)} \\ \mbox{Eqn. 29.4-7: p = q}_h\mbox{(GCP)}\gamma_E\gamma_s & \mbox{(for panels parallel to roof surface)} \end{array}$
 p_Exp-:
 (see table)
 psf

 p_NExp-:
 (see table)
 psf
 (for panels on flat roofs with $\theta \le 7 \text{deg}$) Ean. 29.4-5: p = a,GCrn Downward Wind Pressure : (see table) (for panels parallel to roof surface)

All panels (use GCrn+): Nominal Net Pressure coefficient: Net Pressure Coefficient: Eqn. 29.4-7: $p = q_h(GCp)\gamma_E\gamma_a$ (for panel Fig 29.4-7 Eqn. 29.4-6: $(GCrn)=(\gamma_p)(\gamma_c)(\gamma_E)(GCrn)$ nom (see table) (GCrn): (see table)

ſ	Α	An	(GCrn)nom1	(GCrn)nom2	(GCrn)nom3	GCrn1_Exp-	GCrn2_Exp-	GCrn3_Exp-	GCrn1_NExp-	GCrn2_NExp-	GCrn3_NExp-	GCrn1+	GCrn2+	GCrn3+
L	(ft ²)	(ft²)												
15	1300	5777.8	0.15	0.21	0.23	-0.21	-0.30	-0.34	-0.14	-0.20	-0.22	0.14	0.20	0.22
16	21	95.0	0.74	0.98	1.14	-1.07	-1.41	-1.65	-0.71	-0.94	-1.10	0.71	0.94	1.10
17	13	58.3	0.84	1.12	1.31	-1.21	-1.61	-1.88	-0.81	-1.07	-1.25	0.81	1.07	1.25
18	9	38.8	0.92	1.23	1.44	-1.32	-1.78	-2.08	-0.88	-1.18	-1.38	0.88	1.18	1.38
19	10	43.7	0.90	1.20	1.40	-1.29	-1.73	-2.02	-0.86	-1.15	-1.35	0.86	1.15	1.35
20														
21														

Γ	Α	GCp1'-	GCp1-	GCp2-	GCp2e-	GCp2n-	GCp2r-	GCp2'-	GCp3-	GCp3e-	GCp3r-	GCp3'-	GCp1'+	GCp1+	GCp2+, 2'+	GCp3+, 3'+
L	(ft ²)															
22	1300	-0.40	-1.00	-1.40	0.00	0.00	0.00	0.00	-1.40	0.00	0.00	0.00	0.20	0.20	0.63	0.63
23	21	-0.90	-1.56	-2.13	0.00	0.00	0.00	0.00	-2.13	0.00	0.00	0.00	0.27	0.27	0.85	0.85
24	13	-0.90	-1.65	-2.24	0.00	0.00	0.00	0.00	-2.24	0.00	0.00	0.00	0.29	0.29	0.88	0.88
25	9	-0.90	-1.70	-2.30	0.00	0.00	0.00	0.00	-2.30	0.00	0.00	0.00	0.30	0.30	0.90	0.90
26	10	-0.90	-1.70	-2.30	0.00	0.00	0.00	0.00	-2.30	0.00	0.00	0.00	0.30	0.30	0.90	0.90
27																
28																

	Α			Clear Wind Flor	W					Obstructed Wil	nd Flow		
L	(ft ²)	C _N 1-	C _N 2-	C _N 3-	C _N 1+	C _N 2+	C _N 3+	C _N 1-	C _N 2-	C _N 3-	C _N 1+	C _N 2+	C _N 3+
29	1300												
30	21												
31	13												
32	9												
33	10												
34													
35													

Α	An	p1_Exp-	p2_Exp-	p3_Exp-	p1_NExp-	p2_NExp-	p3_NExp-	p1+	p2+	p3+
(ft²)	(ft ²)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
1300	5777.8	-4.0	-5.8	-6.5	-2.7	-3.9	-4.4	2.7	3.9	4.4
21.37	95.0	-20.7	-27.3	-31.9	-13.8	-18.2	-21.2	13.8	18.2	21.2
13.11	58.3	-23.4	-31.2	-36.4	-15.6	-20.8	-24.3	15.6	20.8	24.3
8.74	38.8	-25.6	-34.4	-40.2	-17.1	-22.9	-26.8	17.1	22.9	26.8
9.83	43.7	-25.0	-33.4	-39.1	-16.7	-22.3	-26.0	16.7	22.3	26.0

Sec. 29.4.4: Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes

A (ft²)	p1'_Exp- (psf)	p1_Exp- (psf)	p2_Exp- (psf)	p2e_Exp- (psf)	p2n_Exp- (psf)	p2r_Exp- (psf)	p2'_Exp- (psf)	p3_Exp- (psf)	p3e_Exp- (psf)	p3r_Exp- (psf)	p3'_Exp- (psf)	p1'+ (psf)	p1+ (psf)	p2+, p2'+ (psf)	p3+, p3' (psf)
1300	20000	W 10 3		W - 1	10000	- 11000		*****	1 100						
21															
13															
9												3			
10															
											$\overline{}$			-	
														1	
A (ft²)	p1'_NExp-	p1_NExp-	p2_NExp-	p2e_NExp-	p2n_NExp- (psf)	p2r_NExp- (psf)	p2'_NExp- (psf)	p3_NExp- (psf)	p3e_NExp-	p3r_NExp- (psf)	p3'_NExp- (psf)				

Α	p1'_NExp-	p1_NExp-	p2_NExp-	p2e_NExp-	p2n_NExp-	p2r_NExp-	p2'_NExp-	p3_NExp-	p3e_NExp-	p3r_NExp-	p3'_NExp-
(ft²)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
1300			J.								
21											
13											
9		1	0 1						2 3		
10											
			16 S		2 3						
			8		5						

Client: JP Morgan & Chase Computed By: Charloemphon T.							
Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/	Date: 5/11/2020				
Project No: 400127	File No.: 10.00.150111	Verified By:					
Title: Structural Evaluation of Existin	g Roof for Proposed Solar PV Array	Date:					
		Calculation Page No:	8	of	43		
		Load Comparison IBC 2018 Version:	2.3				

6.7. Snow Load
This snow load calculation is in accordance with ASCE 7-16.
Referenced sections, equations, and tables in this section are found in ASCE 7-16.

Referenced sections, equations, and tables in this section	n are found in ASCE 7-16.	
Ground snow load, Exposure Factor, Thermal Factor,	Pg: 30 C ₀ : 1 C _t : 1	Figure 7.2-1 (Table 7.2-1 for Alaska Locations) Table 7.3-1 Table 7.3-2
Risk Category of Building: Snow Importance Factor,	l _s : 1.0	Table 1.5-1 Table 1.5-2
Elevation Differential Between High Roof and Low roof, Length of higher roof parallel to drift, Length of lower roof parallel to drift, Roof eave to ridge horizontal distance,	· <u>—</u>	(ref. Drawings, Site Survey Data, Aurora Layout)
Flat Roof Snow Load		
Flat snow load, Minimum snow load for low-slope, Design flat roof snow Load,	$\begin{array}{c c} {\bf p}_{\rm fc} & 21.0 \ psf \\ \\ {\bf p}_{\rm nc} & 20.0 \ psf \\ \\ {\bf p}_{\rm fc} & 21.00 \ psf \end{array}$	Eqn. 7.3-1: pf = 0.7°Ce*Ct*ls*pg Sec. 7.3.4: $p_m = 1_s^s p_m = 1$
Roof Surface Type:	Other	☐ Fig 7.4-1
Roof Slope Factor Sloped roof snow load,	C _s : 1.00 p,: 21.00 psf	Fig 7.4-1 Eqn. 7.4-1: p _i = Cs*pf
Snow density, Height of balanced snow load,	y: 17.90 pcf h _b : 1.17 ft	Sec. 7.7: $\gamma = 0.13^{\circ} pg + 14 < 30 \text{ pcf}$ Sec. 7.7.1: $h_b = (Cs^{\circ} p_t)/\gamma$
Drift Snow Loads from Higher Roof		
Height from top of balanced snow to upper roof, Ratio of h _c to h _b , Difft loads need not be applied. Leeward Drifft:	h _c : 0.00 ft h _c /h _b : 0.00	Fig. 7-8 Sec. 7.7.1: h_d/h_b must be greater than 0.2 in order for drift loads to be applied
Height of drift,	h _d : 0.00 ft	Sec. 7.7.1, Fig. 7.6-1: $h_d = (0.43 * (l_u)^{1/3} * (p_g + 10)^{1/4} - 1.5) * l_s^{1/2}$ but not greater than $0.6* l_L$
width of snow drift, Maximum intensity of drift surcharge load, Windward Drift:	w: 0.00 ft p _d : 0.00 psf	Sec. 7.7.1: $\mathbf{w} = (4 * h_d)$, if $h_d s h_v$, or, $\mathbf{w} = (4 * h_d^2)/h_v$ if $h_d > h_d$; \mathbf{w} shall not exceed $8h_v$ Sec. 7.7.1: $p_d = h_d * \gamma$
height of drift, width of snow drift, Maximum intensity of drift surcharge load,	h _d : 0.00 ft w: 0.00 ft p _d : 0.00 psf	Sec. 7.7.1, Fig. 7.6-1: h_d = 0.75 * (0.43 * (I_c) $^{1/2}$ * (p_c + 10) $^{1/4}$ - 1.5) * I_c , $^{1/2}$ Sec. 7.7.1: w = (4 * I_c) I_c ,
Drift Snow Loads from Parapet Height from top of balanced snow to parapet top, Ratio of h_2 to h_3 . Drift loads must be applied: Windward Drift:	h _c : 5.33 ft h _d /h _b : 4.54	Fig. 7.7-2 Sec. 7.7.1: h_0/h_0 must be > 0.2, and roof side length > 15ft for drift loads to be applied
height of drift, width of snow drift, Maximum intensity of drift surcharge load,	h _d : 1.08 ft w: 4.31 ft p _d : 19.27 psf	Sec. 7.7.1; $\text{Fig. } 7.9$: $\text{h}_{\text{d}} = 0.75 ^{\circ} \left(0.43 ^{\circ} \left(l_{\text{t}} \right)^{1/3} ^{\circ} \left(p_{\text{g}} + 10 \right)^{1/4} \cdot 1.5 \right)^{9} l_{\text{t}}^{1/2}$ Sec. 7.7.1; $\text{w} = (4 ^{\circ} h_{\text{d}})$, if $h_{\text{d}} \leq h_{\text{tr}}$, or, $\text{w} = (4 ^{\circ} h_{\text{d}}^{2}) / h_{\text{c}}$ if $h_{\text{d}} > h_{\text{c}}$; w shall not exceed 8h _c Sec. 7.7.1; $p_{\text{d}} = h_{\text{d}} ^{\circ} \gamma$
Unbalanced Snow Loads Unbalanced loads need not be considered. Unbalanced load on leeward side, Unbalanced load on leeward side, Unbalanced surcharge load on leeward side, Unbalanced surcharge load width, Unbalanced load on windward side,		Sec. 7.6.1, Fig. 7.6-2 Eqn. 7.4-1, Fig. 7.6-1; ps = Cs*pf Sec. 7.6.1, Fig. 7.6-1; [where: $h_d = \{0.43 * \{l_a\}^{1/2} * (p_g + 10)^{1/4} \cdot 1.5\}^a l_a^{1/2}\}$ [Ji. seave to ridge distance for widward portion of roof; S is roof slope run for a rise of one] Fig. 7-5: $p_{max} = 0$ if W -20 ff; $p_m = 0.34^m (V_m)$ if W =20ff:
Rain-on-Snow Surcharge Load Rain-on-snow surcharge load need not be applied. Rain-on-snow surcharge load,	p _n : 0.00 psf	Sec. 7.10
Sliding Snow Loads from Solar Panel hp < hb, sliding loads need not be considered. See Ref. 9	9, Chapter 3.	

Height of panel at higher edge: height of panel at higher edge: height of panel at higher edge: height of panel at higher edge: height of panel at higher edge:

Drift Snow Loads from Solar Panel hp < 1.2hb, drift loads need not be considered. See Ref. 9, Chapter 3.

6.8. Rain Load

This rain load calculation is in accordance with ASCE 7-16.

Depth of Water upto inlet of secondary drainage,	d _s :	2.5 in	(ref. Drawings, Site Survey Data, Aurora Layout) Table C8.3-1 to C8.3-6 (Q = 0.0104^*A^*I , where A = roof area serviced by a single drainage system, i=design rainfall intensity) Eqn. 8.3-1: R = $5.2^*(d_s + d_h)$
Depth of Water above inlet of secondary drainage,	d _h :	0.0 in	
Rain Load,	R:	13.00 psf	

(hp = h₂ plus 1.6" allowance for panel thickness)

Client: JP Morgan & Chase		Computed By: Charloemphon T.					
Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/	1/2020				
Project No: 400127	File No.: 10.00.150111	Verified By:					
Title: Structural Evaluation of Existing	Roof for Proposed Solar PV Array	Date:					
		Calculation Page No:	9	of	43		
	-	I I C : IDC 2040 V :	2.2				

6.9. <u>Seismic Load</u>
This seismic load calculation is in accordance with ASCE 7-16.

Per ASCE7-16 Section 13.6.12, rooftop solar Referenced sections, equations, and tables				orces determined	d in section 13.3.							
Horizontal Seismic Design Force,			1 + 2 z/h) / (Rp/ 3 (1 + 2 x 1.00) / Wpv		(Controls)	Eqn. 13.3-1						
Max Horizontal Seismic Design Force,	Fp =	1.6 S _{DS} lp Wpv 1.6 x 0.23 x 1.00		(maximum)	(,	Eqn. 13.3-2						
Min Horizontal Seismic Design Force,		0.30 S _{DS} Ip Wpv 0.30 x 0.23 x 1.0 0.07		(minimum)		Eqn. 13.3.3						
Short period spectral acceleration,	S _{DS} =	0.23				Sec. 11.4.5, ASC	E 7 Hazard Tool					
Seismic Design Category,	SDC =	В				ASCE7 Hazard To	ool					
Component Importance Factor Component response modification factor, Component amplification factor, Maximum z/h value,	Ip = Rp = ap = z/h =	1.00 1.50 1.00				Sec. 13.1.3 Table 13.5-1/13 Table 13.5-1/13						
Seismic Shear:												
Height from grade,	h =	14.50	ft			(ref. Drawings, S	Site Survey Data	Aurora Layout)				
Horizontal Seismic Load,	Fp = =	0.19 x Wpv = 0.19	Wpv									
Vertical Seismic Load,	Ev =	+/- 0.2 S _{DS} Wpv 0.0462	Wpv			Sec. 13.3.1.2						
Weight of PV array, Weight of roof, Wall + Other Weight tributary to N-S SFRS, Wall + Other Weight tributary to E-W SFRS,	$W_{pv} = Wroof = W_{NS_Wall} = W_{EW_Wall}	103.3 0.0	kip kip kip kip									
Exist Effective Seismic Weight (N/S Dir), Exist Effective Seismic Weight (E/W Dir),	$W_{NS_exist} = W_{EW_exist} =$	103.3 103.3				ary to North-Sout ary to East-West				Exist W _{NS} = Exist W _{EW} =		kip kip
New Effective Seismic Weight (N/S Dir), New Effective Seismic Weight (E/W Dir),	W _{NS_new} = W _{EW_new} =	111.4 111.4		<= <=	W _{NS_exist} = W _{EW_exist} =	113.7						
	Component: Dead Load (psf): Total Area (ft²): % Area: Material:	North Wall - 1	North Wall - 2	South Wall - 1	South Wall - 2	East Wall - 1	East Wall - 2	West Wall - 1	West Wall - 2	Other - NS	Other - EW	

Client: JP Morgan & Chase		Computed By: Charloemphon T.							
Project Name: Rooftop Solar Program Tranche No: 10 Date: 5/11/2020									
Project No: 400127	File No.: 10.00.150111	Verified By:	Verified By:						
Title: Structural Evaluation of Existing Roof for	Title: Structural Evaluation of Existing Roof for Proposed Solar PV Array				Date:				
		Calculation Page No:	10	of	43				
		Load Comparison IBC 2018 Version:	2.3						

7.0. Load Comparison Before and After Solar PV Array Installation

Load Type	Before PV Array (psf)	After PV Array (psf)
Dead Load	25.40	32.39
Roof Live Load	20.00	0.00
Rain Load	13.00	13.00
Snow Load	32.00	21.00
Wind (downward - Zone 1)	16.00	16.00
Wind (downward - Zone 2)	16.00	16.00
Wind (downward - Zone 3)	16.00	16.00
Without Overhang:	•	
Wind (uplift - Zone 1)	-22.83	-22.83
Wind (uplift - Zone 2)	-30.58	-30.58
Wind (uplift - Zone 3)	-30.58	-30.58
With Overhang:		
Wind (uplift - Zone 1)	-22.83	-22.83
Wind (uplift - Zone 2)	-24.77	-24.77
Wind (uplift - Zone 3)	-24.77	-24.77
Vertical Seismic Load	1.17	1.50

ASD Load Combinations	Before PV Array (psf)	After PV Array (psf)	% Increase
Downward Load Cases (Gravity dir	ection)		
D+ (RLL or R)	45.40	45.39	
D+S	57.40	53.39	
D+0.6W (Zone 1)	35.00	41.99	
D+0.6W (Zone 2)	35.00	41.99	
D+0.6W (Zone 3)	35.00	41.99	
D+0.45W+0.75(RLL or R)-Zone 1	47.60	49.34	
D+0.45W+0.75(RLL or R)-Zone 2	47.60	49.34	
D+0.45W+0.75(RLL or R)-Zone 3	47.60	49.34	
D+0.45W+0.75S (Zone 1)	56.60	55.34	
D+0.45W+0.75S (Zone 2)	56.60	55.34	
D+0.45W+0.75S (Zone 3)	56.60	55.34	
D+0.7E	26.22	33.44	
D+0.525E+0.75S	50.02	48.93	
Uplift Load Cases (Gravity Directio	n)		
Without Overhang:			
0.6D+0.6W (Zone 1)	1.54	5.73	
0.6D+0.6W (Zone 2)	-3.11	1.09	
0.6D+0.6W (Zone 3)	-3.11	1.09	
With Overhang:			
0.6D+0.6W (Zone 1)	1.54	5.73	
0.6D+0.6W (Zone 2)	0.38	4.57	
0.6D+0.6W (Zone 3)	0.38	4.57	
0.6D+0.7E	14.42	18.39	
Governing LC (downward)	57.40	55.34	-3.59
Governing LC (uplift case)	-3.11	1.09	0.0
Allowable PV Array (psf)			11.92

Gravity Check:	New governing design load is less than existing design load. Per IEBC 2018 Section
	502.4, structure is permitted to remain unaltered.

Load Type	Before PV Array (kip)	After PV Array (kip)	% Increase
Effective Seismic Weight (N/S Dir)	103.34	111.37	7.8
Effective Seismic Weight (E/W Dir)	103.34	111.37	7.8

Allowable PV Array Weight (kin)	10.33

Lateral Check:	The increase in seismic demand-capacity due to addition of PV arrays is less than 10% of the
	existing demand-capacity. Per IEBC 2018 Section 502.5, Existing structure is permitted to
	remain unaltered.

Panel Pressure Load Check			
Allowable Panel Pressure: Flat Roof		50 psf	
Allowable Panel Pressure: Pitch Roc		78 psf	
Max Wind Load:	31.9	psf	
Max Wind Load Override:		psf	

Note: User may used max wind load override to adjust for roof zone and module exposure criteria applicable for a specific site.

8.0. Connection Design Loads (Not Applicable)

Α	Module Edge	Max	kimum Tension	(lb)	Maxin	num Compress	ion (lb)	Max. Shear (lb)	Max. Co	mb. Tension/S	hear (lb)	Max. Com	b. Compression	n/Shear (lb)
(ft ²)	Exposure	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3	All Zones	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													

Unbalanced / Drift Snow Load Areas

A	Module Edge	Max	kimum Tension	(lb)	Maxin	num Compress	ion (lb)	Max. Shear (lb)	Max. Co	mb. Tension/S	hear (lb)	Max. Com	b. Compression	n/Shear (lb)
(ft ²)	Exposure	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3	All Zones	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													
	Exposed													
	Non-Exposed													
	Exposed													
ĺ	Non-Exposed													
	Exposed													
	Non-Exposed													

Roof Coefficient of Friction, μ =	

Summary of Connection Design Loads

			Effective Area, A	(ft²)	
Load (lb)	Max Value				
Maximum Tension (Exposed module)					
Maximum Tension (Non-Exposed module)					
Maximum Compression					
Maximum Shear					
Maximum Combined Tension/Shear (Exposed module)					
Maximum Combined Tension/Shear (Non-Exposed module)					
Maximum Combined Compression/Shear					

Client: JP Morgan & Chase	Computed By: Charloemphon T.						
Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/11/2020					
Project No: 400127	File No.: 10.00.150111	Verified By:					
Title: Structural Evaluation of Existing Roof for Proposed Solar PV Array		Date:					
		Calculation Page No:	12	of	43		
		1 1 C IDC 2010 V'	2.2				

$$\begin{split} & \mathsf{Eqn.}\ 12.4\text{--}1, Z'\alpha_{\mathsf{Exp}} = \mathsf{W'^*p_t}^* \mathsf{Z'^*}(0.9/C_0)/(\mathsf{W'^*p_t})^* \mathsf{cos}^2\alpha_{\mathsf{Exp}} \mathsf{+}Z'^*(0.9/C_0)^* \mathsf{Sin}^2\alpha_{\mathsf{Exp}}) \\ & \mathsf{Eqn.}\ 12.4\text{--}1, Z'\alpha_{\mathsf{NExp}} = \mathsf{W'^*p_t}^* \mathsf{Z'^*}(0.9/C_0)/(\mathsf{W'^*p_t})^* \mathsf{cos}^2\alpha_{\mathsf{NExp}} \mathsf{+}Z'^*(0.9/C_0)^* \mathsf{Sin}^2\alpha_{\mathsf{NExp}}) \end{split}$$

Connection Design Loads
Connection Effective Area, A
Maximum Tension (Exposed module)
Maximum Tension (Non-Exposed module)
Maximum Compression

9.0. Connection Design Capacity (Not Applicable)

Adjusted Comb. Shear & Withdrawal Capacity (Exposed Edge),

Adjusted Comb. Shear & Withdrawal Capacity (Non-Exposed Edge),

Connection Type	
Tension Capacity	
Compression Capacity	
Shear Capacity	
Comb. Tension / Shear Capacity (Exposed Module)	
Comb. Tension / Shear Capacity (Non-Exposed Module)	
Comb. Compression / Shear Capacity	
Geometry Check	

Maximum Combined Tension/Shear (Exposed module) Maximum Combined Tension/Shear (Non-Exposed module Maximum Combined Compression/Shear Maximum Combined Compressions aneau Allowable Connection Spacing (based on Tension Capacit SS21-1: Lag Screw Referenced sections, equations, and tables on this page are from NDS 2018, unless noted otherwise Depth of Top Chord/Rafter (Main Member), Decking (side member), Decking (side member) Thickness, Embedment Length in Main Member, Specific Gravity of Rafter Species, Specific Gravity of Deck Species, (in 1/2" increments. 2" min, not to exceed member depth) Table 12.3.3A (Use G=0.42 for unknown species) Table 12.3.3B (Use G=0.42 for unknown species. Lag Screw Diameter, Lag Screw Root Diameter Table L2 Lag Screw Bending Yield Strength, Length of Lag Screw Tappered Tip, Portland Bolt - ASTM F593, Table L2 https://www.portlandbolt.com/technical/specifications/astm-f593/ Design Embedment Length in Main Member Embedment Length in Side Member, Table 12.3.3. Fem = 11200*Gtruss Dowel Bearing Strength of Main Member. Dowel Bearing Strength of Side Member, Table 12.3.3, Fes = 6100*Gpanel^{1.45}/sqrt(D) Yield Limit Equations for Single Shear Dowel Type Connections Table 12.3.1B, K₀ = 10D+0.5 for 0.17"<D<0.25" Diameter Coefficient. Table 12.3.18, K_0 = 1+0.25(θ /90) where θ angle b/n load direction and grain direction (0<= θ <=90) Table 12.3.1B, Rd = $K_0^*K_0$ Angle to Grain Coefficient. Reduction term, Table 12.3.1A, Re = Fem/Fes Table 12.3.1A, Rt = lm/ls , Table 12.3.1A, $k1 = (sqrt(Re+2*Re^2*(1+Rt+Rt^2)+Rt^2*Re^3)-Re*(1+Rt))/(1+Re)$, Table 12.3.1A, Sec. 12.3.7, $k2 = -1 + SQRT(2^{(1+Re)} + (2^{r}yb^{*}(1+2^{r}Re)^{*}Dr^{2})/(3^{r}em||^{s}m^{2})$ Table 12.3.1A, Sec. 12.3.7, $k3 = -1 + SQRT(2^{s}(1+Re)/Re+(2^{r}yb^{*}(2+Re)^{*}Dr^{2})/(3^{r}em||^{s}b^{2}))$ Reference Single Shear Design Value, Z Eqn. 12.3-1, Sec. 12.3.7, Z = Dr*Im*Fem/(R_D) Eqn. 12.3-2, Sec. 12.3.7, Z = Dr*Is*Fes/(R_D) Yield Mode Im Yield Mode Is Yield Mode II Yield Mode IIIm Yield Mode IIIs Yield Mode IV lb Governing Mode Table 2.3.2, (1.15 if governed by snow, 1.6 if governed by seismic) Load Duration Factor. Wet Serive Factor, Temperature Factor, Geometry Factor, Sec. 12.5.1 Adjusted Shear Capacity, Sec. 12.3.2, Table 11.3.1, $Z' = Z*C_D*D_M*C_t*D_{\Lambda}$ Withdrawal Capacity Reference Withdrawal Capacity, Load Duration Factor, Wet Serive Factor, lb/in Eqn. 12.2-1, W = 1800*G^(3/2)*D^(3/4) Table 2.3.2 (1.6 because uplift is governed by Wind or Seismic) Temperature Factor, Table 11.3.4 Geometry Factor, Adjusted Withdrawal Capacity per inch, Sec. 12.5.1 Sec. 12.2.1, Table 12.2A, W' = W*C_D*D_M*C_t*D_Δ Adjusted Withdrawal Capacity, Sec. 12.2.1, Table 12.2A, W' = W'*Im Combined Shear and Withdrawal Capacity Angle Between Load and Wood Surface (Exposed Edge), Angle Between Load and Wood Surface (Non-Exposed Edge),

Client: JP Morgan & Chase	Computed By: Charloemphon T.							
Project Name: Rooftop Solar Program	Tranche No: 10 Date: 5/11/2020							
Project No: 400127	File No.: 10.00.150111	Verified By:						
Title: Structural Evaluation of Existing Roof for Proposed Solar PV Array		Date:						
		Calculation Page No:	13	of	43			
		Load Comparison IBC 2018 Version:	2.3					

SS21-2: U-Anchor	(U-Anchor 2400 or 2600 (F.O.S =	3))		
Uplift Capacity,	UAnchor _{uplift} :		lb .	Refs. 36
Shear Capacity,	UAnchor _{shear} :		lb	Refs. 36
onear eapacity,	O'Allellol shear.		15	10.55
SS21-3: S-5U	(S-5U! Universal Clamp for Stand	: C D6-\		
		ilig Scalli Kools)	lb	0-4 10
Uplift Capacity,	S5U _{uplift} :			Ref. 18
Shear Capacity,	S5U _{shear} :		lb .	Ref. 18
SS21-4: Versabracket	(F.O.S = 1.5)			
	(F.O.5 = 1.5)		1	
Anchor Material,	No		lb.	Ref. 19
Uplift Capacity,	Versabrkt _{uplift} :			
Shear Capacity,	Versabrkt _{shear} :		lb .	Ref. 19
SS21-5: Bolt to Steel				
Referenced sections, equations, and tables a	re found in AISC 14th Edition, un	ess noted otherwise.		
Bot Diameter,	d _b :		in	
Nominal Shear Strength,	F _{m_Ω} :		ksi	Table 7-1
Nominal Tension Strength,	 :م. F _{nt}		ksi	Table 7-2
Nominal Bolt Area,	A _b :		in ²	
	-			
Bolt Shear Strength,	r _{w_} Ω:		lb .	J5.2,J3.6, F _{my_\Omega} = 0.85*Fnv*Ab
Bolt Tension Strength,	r _{nt_} α:		lb .	J5.2,J3.6, F _{m,Ω} = Fnt*Ab
Member Bearing Strength				
Steel Member Yield Strength,	F _v :		ksi	
Steel Member Ultimate Stregth,	F _{II} :		ksi	
			in	
Member Flange Thickness,	t _i :			
Member Flange Width,	b _t :		in	
Member Web Thickness,	t _w :		in	
k1 Dimension,	k _{rtes} :		in	
Workable Gauge,	gauge:		in	
Min. Allowable Clear Distance,	L		in	Table J3.4, Ic = db+1/4-db/2-1/32 (in)
			""	Sec. J3.10
ASD Bearing Reduction Factor,	$\Omega_{ m brg}$:			
Bearing Strength,	R _{n_} a:		lb	Sec. J3.10, $R_{n_{-\Omega}} = min(1.2*lc*tf*Fu, 2.4*db*tf(Fu)/\Omega_{brg}$
Member Flange Bending				
Effective Flange Width,	b _{eff} :		in	$b_{eff} = (gage/2-k_{des})*2$
Moment of Inertia,			in 4	$I_{\text{flange}} = b_{\text{eff}} * t_{\text{f}}^3 / 12$
	flange:		··· .	
Plastic Section Modulus,	Z _{flange} :		in ³	$Z_{flange} = b_{eff} * d_f^2 / 4$
ASD Bending Reduction Factor,	Ω_{bnd} :			Sec. F1
Flange Bending Strength,	M _{n_Ω} :		kip.in	$M_{n,\Omega} = Fy*S_{flange}/\Omega_{bnd}$
Maximum Tension for Moment,	T _{max} :		lb .	$T_{\text{max}} = M_{n,\Omega} / (\text{gage/2 - k}_{\text{des}})$
			!	101 101 100
Geometry and Member Capacity Checks	i		1	
Nut Diameter/Width,	G _{nut} :		in	(Nut Width = 0.557" across corners)
Nut Clearance Check,	Clearance Check:			
Tile Roof Connections				
Load capacities are referenced in from Quick	Mount PV State Compliance Lett	ers. See Reference List in	Section 3.0.	
Roof Deck Thickness.	t	eror occ mererence alse ii	in	
Specific Gravity of Wood,	G		""	
Specific Gravity of Wood,	G _{truss} .		l	
				(0.1144
SS22-1: Quick Hook Side	SS22-4: Quick Hook Bottom			(Quick Mount PV Quick Hook Mount (QMHLB, QMHLS, QMHSB, QMHSS))
Uplift Capacity Reduction,				Refs. 29 & 31, applied to adjust for deck thickness
Compression Capacity of QHook,	QMH _{compression} :		lb	Refs. 29 - 35
Uplift Capacity of QHook,	QMH _{uplift} :		lb .	Refs. 29 - 35
Shear Capacity of QHook,	QMH _{shear} :		lb .	Refs. 29 - 35
SS22-2: QBase	(Quick Mount PV Qbase Univers	al Tile Mount (OMUTM))		
Uplift Capacity Reduction,	, r quase onivers			Refs. 26 & 28, applied to adjust for deck thickness
			n.	
Uplift Capacity of QBase,	QBase _{uplift} :		lb	Refs. 26 & 27
Shear Capacity of QBase,	QBase _{shear} :		lb .	Refs. 26 & 27
SS22-3: Tile Replacement	(Quick Mount PV Tile Replaceme	ent Mount (QMTRM))		
Uplift Capacity Reduction,				Refs. 23 & 25, applied to adjust for deck thickness per Note 6.
Uplift Capacity of Tile Replacement Mount,	QMTRM _{uplift} :		lb.	Refs. 23 & 24
	QMTRM _{uplift} : QMTRM _{shear} :		lb	Refs. 23 & 24
Shear Capacity of Tile Replacement Mount,	QIVI I KIVI _{shear} :		III	NCI5. 23 0(24
SS22-5: IronRidge KO Tile	(IronRidge Knockout Tile Roof A	ttachment)		
Uplift Capacity of KO Tile Assembly,	Uplift:	пасиненц	lb	Ref. 37
Compression Capacity of KO Tile Assembly,	Compression:		Ib	Ref. 37
Downslope Shear Capacity of KO Tile Assembly,			Ib	Ref. 37
			lb	Ref. 37
Across Slope Shear Capacity of KO Tile Assen	Across stope shear:			the state of the s

	Client: JP Morgan & Chase		Computed By: C	harloempho	on T.
	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5,	/11/2020	
	Project No: 400127	File No.: 10.00.150111	Verified By:		
	Title: Structural Evaluation of Existi	ng Roof for Proposed Solar PV Array	Date:		
BLACK & VEATCH			Calculation Page No:	14	(
	•		Load Comparison IBC 2018 Version:	2.3	

APPENDIX A ASCE7 HAZARDS REPORT

of

43

12590

ASCE 7 Hazards Report

ASCE/SEI 7-16 Standard: **Elevation:** 163.43 ft (NAVD 88) Address:

1460 Route 9 Risk Category: ||

Latitude: 41.588387 Wappingers Falls, New York Soil Class: D - Default (see Longitude: -73.907554

Section 11.4.3)

Wind

Results:

Wind Speed: 113 Vmph 10-year MRI 75 Vmph 25-year MRI 84 Vmph 50-year MRI 89 Vmph 100-year MRI 94 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4

Date Accessed: Fri Jul 12 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

S _s :	0.217	S_{D1} :	0.09
S_1 :	0.056	T _L :	6
F _a :	1.6	PGA:	0.123
F_v :	2.4	PGA _M :	0.192
S _{MS} :	0.347	F _{PGA} :	1.553
S _{M1} :	0.134	l _e :	1
Sns :	0.231	C _v :	0.733

Seismic Design Category B

Data Accessed: Fri Jul 12 2019

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16

Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed: 40 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Fri Jul 12 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Snow

Results:

Ground Snow Load, p_g: 30 lb/ft² Elevation: 163.4 ft

Data Source: ASCE/SEI 7-16, Table 7.2-8

Date Accessed: Fri Jul 12 2019

Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow

loads at elevations not covered.

Rain

Results:

15-minute Precipitation Intensity: 5.82 in./h

60-minute Precipitation Intensity: 2.51 in./h

Data Source: NOAA National Weather Service, Precipitation Frequency Data Server, Atlas 14

(https://www.nws.noaa.gov/oh/hdsc/)

Date Accessed: Fri Jul 12 2019

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

	Client: JP Morgan & Chase		Computed By: Ch	narloempho	n T.	
	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/	11/2020		
	Project No: 400127	File No.: 10.00.150111	Verified By:			
0	Title: Structural Evaluation of Existi	ng Roof for Proposed Solar PV Array	Date:			
ATCH			Calculation Page No:	19	of	43
			Load Comparison IBC 2018 Version:	2.3		

APPENDIX B AURORA SHADE REPORT (SOLAR PANEL LAYOUT)

Aurora Shade Report

Customer

BatchK JPMCTrancheNY

Address

1460 Route 9 Wappingers Falls, NY 12590-4425 Designer

Charloemphon Thanasattayaviboon **Coordinates**

(41.588136, -73.907589)

Organization

Black and Veatch

Date

12 May 2020

Annual irradiance

kWh/m²/year

2,450 or more

2,100

1,750

1,400

1,050

700

350

Summary

Array	Panel Count	Azimuth (deg.)	Pitch (deg.)	Annual TOF (%)	Annual Solar Access (%)	Annual TSRF (%)
1	23	281	8	84	92	78
2	23	101	8	86	95	81
Weighted average by panel count	-	-	-	-	93.5	79.5

Monthly solar access (%) across arrays

Array	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	87	90	92	94	94	94	94	94	93	92	90	86
2	89	92	94	96	96	96	96	96	95	93	92	89

Customer

BatchK JPMCTrancheNY

Address

1460 Route 9 Wappingers Falls, NY 12590-4425

Designer

Charloemphon Thanasattayaviboon Coordinates (41.588136, -73.907589)

Organization

Black and Veatch

Date

12 May 2020

Zoomed out satellite view

3D model

3D model with LIDAR overlay

Customer

BatchK JPMCTrancheNY

Address

1460 Route 9 Wappingers Falls, NY 12590-4425

Designer

Charloemphon Thanasattayaviboon **Coordinates** (41.588136, -73.907589)

Organization

Black and Veatch

Date

12 May 2020

Street view and corresponding 3D model

I, **Charloemphon Thanasattayaviboon**, certify that I have generated this shading report to the best of my abilities, and I believe its contents to be accurate.

	Client: JP Morgan & Chase		Computed By: C	harloemph	ıon T.
	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5,	/11/2020	
	Project No: 400127	File No.: 10.00.150111	Verified By:		
	Title: Structural Evaluation of Exist	ing Roof for Proposed Solar PV Array	Date:		
BLACK & VEATCH			Calculation Page No:	23	
	`		Load Comparison IBC 2018 Version:	2.3	

APPENDIX C REFERENCE DRAWINGS

of

43

DESIGN LOADS

1. DESIGN LOADS SHALL CONFORM TO THE FOLLOWING: NEW YORK STATE BUILDING CODE 2002

ANSI/ASCE 7-98 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES

2 LIVE LOADS

ROOF

(SEE SNOW LOAD)

3. SNOW LOAD:

DRIFT & UNBALANCED LOADS AS PER NYS BUILDING CODE 2002

CROUND CHOW	EE DOE
GROUND SNOW LOAD	55 PSF
LAT ROOF (SHELTERED)	46.2 PSF
MPORTANCE FACTOR	Is=1.0

4. WND LOADS:

PRESSURE COEFFICIENTS AS PER NYS BUILDING CODE 2002

BASIC WIND SPEED	90 MPH
EXPOSURE CATEGORY	EXPOSURE B
IMPORTANCE FACTOR	lw = 1.0
CLASSIFICATION	LOW RISE BUILDING
	(MEAN ROOF HEIGHT/FOFT)

MAIN BUILDING (ENCLOSED): DESIGN LOAD (MWFRS)
UPLIFT LOAD (MAIN BUILDING)
UPLIFT LOAD (AT OVERHANGS) 12.8 PSF 15.4 PSF 23.1 PSF

DRIVETHRU CANOPY (OPEN): UPLIFT LOAD

23.1 PSF

5. SEISMIC LOADS:

SITE CLASS D IMPORTANCE FACTOR SEISMIC USE GROUP SEISMIC DESIGN CATEGORY CATEGORY I

GENERAL

ALL WORK SHALL BE PERFORMED IN STRICT ACCORDANCE WITH THE NEW YORK STATE BUILDING CODE AND WITH THE RULES AND REGULATIONS OF ALL LOCAL AGENCIES, DEPARTMENTS OR LAWS HAVING JURISDICTION OVER ANY PORTION OR SPECIFIC PHASE OF THE WORK. THE CONTRACTOR SHALL COORDINATE THE WORK WITH PUBLIC UTILITY COMPANIES HAVING JURISDICTION.

2. THE CONTRACTOR SHALL OBTAIN ANY AND ALL PERMITS REQUIRED FOR THE PERFORMANCE OF THE WORK AND PAY ALL FEES IN CONNECTION THEREOF.

FOUNDATION - CONT.

6. NO BACKFILLING OR COMPACTION AGAINST WALLS SHALL BE DONE UNTIL THE CONCRETE HAS ATTAINED FULL STRENGTH AND SUPPORTING SLABS ARE IN PLACE OR WALLS HAVE BEEN ADEQUATELY BRACED.

7. FILL AND BACKFILL MATERIAL SHALL BE FREE OF DELETERIOUS ORGANIC MATTER.

8. CONSTRUCTION JOINTS IN WALLS SHALL BE VERTICAL JOINTS LOCATED A MINIMUM DISTANCE OF $4^{\circ}-0^{\circ}$ FROM ANY WALL OPENINGS OR CONCENTRATED LOADS.

9. NO HORIZONTAL CONSTRUCTION JOINTS WILL BE PERMITTED IN WALLS, BUTTRESSES, OR FOOTINGS UNLESS SPECIFICALLY SHOWN.

10. SPREAD FOOTINGS SHALL BE LOCATED SUCH THAT COLUMNS ARE CENTERED OVER FOOTINGS IN BOTH DIRECTIONS, UNLESS NOTED OTHERWISE ON PLAN.

11. NO FOOTING SHALL BE PLACED IN WATER OR ON FROZEN GROUND.

12. STANDARD PROCEDURES OF FROST PROTECTION FOR FOOTINGS AND FOOTING EXCAVATIONS SHALL BE USED FOR WINTER CONSTRUCTION. BACKFILLING OF FOOTING EXCAVATIONS SHALL BE DONE AS SOON AS POSSIBLE TO PROTECT FOOTINGS FROM FROST

13. WATERSTOPS SHALL BE PLACED IN ALL CONSTRUCTION JOINTS BELOW GROUND LEVEL AND AS SHOWN ON THE DRAWINGS.

14. CONTRACTOR SHALL VERIFY ALL ELEVATIONS AND POSITIONS OF EXISTING FOUNDATIONS AT OR ADJACENT TO NEW CONSTRUCTION AND SUBMIT FIELD SKETCHES AS MAY BE REQUIRED FOR ARCHITECT/ENGINEERS' APPROVAL BEFORE STARTING ANY FIELD WORK.

1. ALL CONCRETE WORK SHALL CONFORM TO ACI-318 SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS AND ACI-301 BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE.

2. ALL CONCRETE SHALL BE 3500 P.S.I. CONTROLLED STONE OR GRAVEL CONCRETE, AIR ENTRAINED WHERE EXPOSED.

3. REINFORCING STEEL SHALL CONFORM TO ASTM A-615, GRADE 50, EXCEPT STIRRUPS AND TIES WHICH MAY BE GRADE 40.

4. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A-185 WITH A MINIMUM ULTIMATE STRENGTH OF 70,000 PSI.

5. REINFORCING BARS SHALL BE SPLICED A MINIMUM OF 45 BAR DIAMETERS OR 24" WHICHEVER IS GREATER, UNLESS OTHERWISE NOTED. LAP TOP BARS AT MIDSPAN AND BOTTOM BARS AT SUPPORTS.

6. DEVELOPMENT LENGTH, Ld (or Id) SHALL BE 35 BAR DIAMETERS OR 18", WHICHEVER IS GREATER, UNLESS OTHERWISE NOTED.

7. MINIMUM EMBEDMENT FOR STANDARD HOOKS SHALL BE 16 BAR DIAMETERS UNLESS OTHERWISE NOTED. THE 90 DEGREE END HOOK SHALL HAVE A MINIMUM LENGTH OF 12 BAR DIAMETERS.

CONCR

22. NO UNLES CROSS REINF SL

> 23. 24. ALL OF FEE

	Client: JP Morgan & Chase		Computed By: C	harloemp	hon T.
	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5	/11/2020	
	Project No: 400127	File No.: 10.00.150111	Verified By:		
	Title: Structural Evaluation of Exi	Date:	Date:		
BLACK & VEATCH			Calculation Page No:	29	of
			Load Comparison IBC 2018 Version:	2.3	

APPENDIX D SITE INSPECTION DATA

	Client: JP Morgan & Chase		Computed By: C	harloemph	on T.
	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5	/11/2020	
	Project No: 400127	File No.: 10.00.150111	Verified By:		
	Title: Structural Evaluation of Exist	ing Roof for Proposed Solar PV Array	Date:		
BLACK & VEATCH			Calculation Page No:	32	(
			Load Comparison IBC 2018 Version:	2.3	

APPENDIX E RACKING DESIGN REPORT

43

U-BUILDER PROJECT REPORT

LEGEND: ■ Base System Part ■ Accessory

VERSION: 2.2.7

PROJECT TITLE NY-150111	PROJECT ID 47B9DD70	CREATED Dec. 12, 2019, 10:58 a.m.
NAME ADDRESS	Black & Veatch 1460 Route 9	Designed by JPMCRooftopSolar@bv.com ROOFMOUNT RMDT
CITY, STATE MODULE	Wappingers Falls, NY Mission MSE385SR9S	Mission $46 - MSE385SR9S$ $997.57 \ \mathrm{ft}^2$
		17.71 KW

BILL OF MATERIALS

PART NUMBER	PART TYPE	DESCRIPTION	QUANTITY	SUGGESTED QUANTITY	UNIT PRICE (USD)	TOTAL LIST PRICE (USD)
UserSuppl	iedBallast B <mark>lock</mark>	Ballast Block	161	161	0.00	0.00
310802	Ballast Bay	RMDT Valley Bay	40	40	26.19	1047.60
310825	Mid Clamp	RMDT Mid Clamp 36-40mm	60	60	2.05	123.00
310820	End Clamp	RM End Clamp 32-40mm	120	120	1.94	232.80
310860	Nut	Kit 1/4 20 Clip On Nut SS 18-8	180	180	0.32	57.60
310801	Ballast Bay (Ridge)	RMDT Ridge Bay	30	30	29.43	882.90
008002S	Grounding Lug (Wee	b) GROUND WEEBLUG #1	2	2	6.44	12.88

\$2356.78	TOTAL PRICE	\$12.88	ACCESSORIES PRICE	\$2343.90	BASE SYSTEM PRICE
\$0.133 PER WATT		.001 PER WATT	\$0	.132 PER WATT	\$0

This design is to be evaluated to the product appropriate Unirac Code Compliant Installation Manual which references International Building Code 2009, 2012, 2015, 2018 and ASCE 7-05, ASCE 7-10, ASCE 7-16 and California Building Code 2010, 2016. The installation of products related to this design is subject to requirements in the above mentioned installation manual.

161

Ballast Block UserSupplied Ballast Block

Standard 4x8x16 inch cap blocks. Nationwide availability. Please confirm the weight of your ballast block as this will affect the total blocks required for your installation.

Ballast Bay 310802 RMDT Valley Bay

40

Galvanized steel bay attaches to east and west module edges and provides ballast placement location.

Mid Clamp 310825 RMDT Mid Clamp 36-40mm

60

Stainless steel mid clamp with 14-20 stainless bolt, pairs with Ridge bay.

End Clamp 310820 RM End Clamp 32-40mm

120

Stainless steel end clamp (32-40mm) with ¼-20 stainless bolt, pairs with Valley bay.

Nut 310860 Kit 1/4 20 Clip On Nut SS 18-8

180

Stainless steel clip-on 1/4-20 u-nut.

Ballast Bay (Ridge) 310801 RMDT Ridge Bay

30

Galvanized steel bay attaches to east and west module edges and provides ballast placement location.

Grounding Lug (Weeb) 008002S GROUND WEEBLUG #1

2

For electrical bonding of PV modules and rails. Accepts one 14AWG to 6AWG or two 12 AWG to 10 AWG copper wires. Tin plated copper body, 1/4" stainless steel fasteners.

ENGINEERING REPORT

Plan review

AVERAGE PSF	6.99 psf
TOTAL NUMBER OF MODULES	46
TOTAL KW	17.71 KW
TOTAL AREA	~1149 ft ²
TOTAL WEIGHT ON ROOF	8031 lbs
RACKING WEIGHT	487 lbs
MODULE WEIGHT	2392 lbs
BALLAST WEIGHT	5152 lbs
MAX BAY LOAD (DEAD)	221 lbs
Loads Used for Design	
BUILDING CODE	ASCE 7-16
BASIC WIND SPEED	115.00 mph
GROUND SNOW LOAD	30.00 psf
SEISMIC (SS)	0.21
ELEVATION	164.00 ft
WIND EXPOSURE	В
MRI	50
Loads Determined by Zip	12590
CITY, STATE	Wappingers Falls, NY
BASIC WIND SPEED	104.00 mph
GROUND SNOW LOAD	30.00 psf

Inspection

PRODUCT	ROOFMOUNT RMDT
MODULE MANUFACTURER	Mission
MODEL	MSE385SR9S
MODULE WATTS	385 watts
MODULE LENGTH	78.70"
MODULE WIDTH	39.68"
MODULE THICKNESS	1.58"
MODULE WEIGHT	52.00 lbs
BALLAST BLOCK (CMU) WEIGHT	32.0 lbs
BUILDING HEIGHT	20.00 ft
ROOF TYPE	OTHER
PARAPET HEIGHT	> 1 Array Height (> 10 inches)

Array 1

AVERAGE PSF	6.99 psf	
TOTAL NUMBER OF MODULES:	46	
TOTAL KW:	17.71 KW	
TOTAL AREA:	1149 ft ²	
TOTAL WEIGHT ON ROOF:	8031 lbs	
RACKING WEIGHT:	487 lbs	
MODULE WEIGHT:	2392 lbs	
BALLAST WEIGHT:	5152 lbs	

MINIMUM SEISMIC SEPARATION (UNATTACHED ARRAYS) *	
ARRAY TO ARRAY:	12.0"
TO FIXED OBJECT ON ROOF:	24.0"
TO ROOF EDGE WITH QUALIFYING PARAPET:	24.0"
TO ROOF EDGE WITHOUT QUALIFYING PARAPET:	48.0"
MAX ARRAY (SEISMIC) (FOR UNATTACHED ARRAYS) *	
MAX NUMBER OF NORTH-SOUTH ROWS:	29
MAX NUMBER OF EAST-WEST COLUMNS:	35
*See ASCE 7-16 Section 13.6.12 for more details	

RMDT U-BUILDER PRODUCT ASSUMPTIONS

RMDT - Ballasted Flat Roof Systems

Limitations of Responsibility: It is the user's responsibility to ensure that inputs are correct for your specific project.

Unirac is not the solar, electrical, or building engineer of record and is not responsible for the solar, electrical, or building design for this project.

Building Assumptions

- 1. Risk Category II
- 2. Building Height ≤ 50 ft
- 3. Building Height > 50 ft: only where (longest length of building x building height) $^{0.5} \le 100$ ft
- 4. Roof Slope ≥ 0° (0:12) and ≤ 3° (5/8:12) for Seismic Design Category C, D, E and F. For low seismic regions Seismic Design Category A and B (provided Array Importance factor = 1.0), Roof Slope ≥ 0° (0:12) and ≤ 7° (1 1/2:12).
- 5. Roofing Material Types: EDPM, PVC, TPO, or Mineral Cap
- 6. Surrounding Building Grade: Level

Ballast Blocks

The installer is responsible for procuring the ballast blocks (Concrete Masonry Units – CMU) and verifying the required minimum weight needed for this design. CMU should comply with ASM standard specification for concrete roof pavers designation (C1491 or C90 with an integral water repellant suitable for the climate it is placed. It is recommended that the blocks are inspected periodically for any signs of degradation. If degradation of the block is observed, the block should immediately be replaced.

The CMU ballast block should have nominal dimensions of 4"x8"x16". The actual block dimensions are 3/8" less than the nominal dimensions. Ballast blocks should have a weight as specified for the project in the "Inspection" section of this report.

Design Parameters

- 1. Risk Category II
- 2. Wind Design
 - a. Basic Wind Speed: 110-150 mph (ASCE 7-10)/90-180 mph (ASCE 7-16)
 - b. Exposure: B or C (ASCE 7-10/ASCE 7-16)
 - c. 25 year Design Life/50 year Design Life for ASCE 7-16
 - d. Elevation: Insertion of the project at grade elevation can result in a reduction of wind pressure. If your project is in a special case study region or in an area where wind studies have been performed, please verify with your jurisdiction to ensure that elevation effects have not already been factored into the wind speed. If elevation effects have been included in your wind speed, please select 0 ft as the project site elevation.
 - e. Wind Tunnel Testing: Wind tunnel testing coefficients have been utilized for design of the system.
- 3. Snow Design
 - a. Ground Snow Load: 0-80 psf (ASCE 7-10/ASCE 7-16)
 - b. Exposure Factor: 0.9
 - c. Thermal Factor: 1.2
 - d. Roof Snow Load: Calculation per Section 7.3 (ASCE 7-10/ASCE 7-16)
 - e. Unbalanced/Drifting/Sliding: Results are based on the uniform snow loading and do not consider unbalanced, drifting, and sliding conditions
- 4. Seismic Design
 - a. Report SEAOC PV1-2012/ASCE 7-16 SECTION 13.6.12 Structural Seismic Requirements and Commentary for Rooftop Solar Photovoltaic Arrays
 - b. Seismic Site Class: A, B, C, or D (ASCE 7-10/ASCE 7-16)
 - c. Importance Factor Array (lp): 1.0
 - d. Importance Factor Building (le): 1.0
 - e. Site Class: D

Properties

- 1. Ridge Bay Weight: ~7.7 lbs
- 2. Valley Bay Weight: ~5.6 lbs
- 3. Module Gaps (N/S) = 0.25 in
- 4. Bays: East and west column bays overhang the module by ~7.9 inches.

Testing

- 1. Coefficient of Friction
- 2. Wind Tunnel
- 3. UL 2703
- 4. Component Testing (Bay and Clamp)

Setbacks

For the wind tunnel recommendations in U-Builder to apply, the following setbacks should be observed/followed for U-Builder wind design:

- 1. Modules should be placed a minimum of 3 feet from the edge of the building in any direction.
- 2. If the array is located near an obstruction that is 3.5 feet wide and 3.5 feet high or larger, the nearest module of the array must be located a distance from the obstruction that is greater than or equal to the height of the obstruction.
- 3. Installations within the setbacks listed above require site specific engineering ²
- 4. The setbacks above are for wind. High seismic areas, fire access isles, mechanical equipment, etc., may require larger setbacks than listed above for wind.

Site Specific Engineering

Conditions listed below are beyond the current capabilities of U-Builder. Site specific engineering is required.

- 1. Wind designs for a project design life exceeding 25 years 1/ASCE 7-16
- 2. Building assumptions and design parameters outside of U-Builder assumptions²
- 3. Attachments²
- 4. Risk Category III or IV projects (U-Builder can be adjusted for the correct wind, but not the seismic or snow design)²
- 5. Wind tunnel testing reduction factors are not permitted by the Authority Having Jurisdiction (AHJ)³
- 6. Seismic designs that fall outside SEAOC PV1-2012/ASCE 7-16 SECTION 13.6.12 recommendations (>3% roof slope, or AHJ's that require shake table testing or non-linear site-specific response history analysis) 3
- 7. Signed and sealed site-specific calculations, layouts, and drawings³

Notes:

¹Please contact info@unirac.com.

² Please contact EngineeringServices@unirac.com for more information.

³Please contact Theresa Allen with PZSE Structural Engineers at theresa@pzse.com. These items will require direct coordination with PZSE to complete the requested services.

INSTALLATION AND DESIGN PLAN

Roof Area 1 / Array 1

LEGEND

1 Standard corner bay with CMU block count

4 Supplemental bay with CMU block count

NOTE

Bays in the space beside modules are supplemental bays. You can fit a maximum of 2 blocks in valley bays, and 5 blocks in ridge bays. If the number in these bays is greater, you will need to add an additional supplemental bay.

Layout Dimensions

NS DIMENSION	~ 46.03 ft
EW DIMENSION	~ 52.10 ft

ROW	MODULES	BAYS	BALLAST BLOCKS (CMU)	BALLAST WEIGHT (LBS)
1	10	12	28	896
2	8	12	25	800
3	6	9	24	768

4	4	7	17	544
5	8	9	20	640
6	6	9	19	608
7	4	7	15	480
8	0	5	13	416

	Client: JP Morgan & Chase		Computed By: Charloemphon T.			
	Project Name: Rooftop Solar Program	Tranche No: 10	Date: 5/	/11/2020		
	Project No: 400127	File No.: 10.00.150111	Verified By:			
	Title: Structural Evaluation of Existing Roof for Proposed Solar PV Array		Date:			
BLACK & VEATCH			Calculation Page No:	41	of	43
	•		Load Comparison IBC 2018 Version:	2.3		

APPENDIX F SOLAR ARRAY WEIGHT SUMMARY

(NOT USED)

ohon T.
)
-
÷

APPENDIX G DETAILED MEMBER CHECK

of

43

(NOT USED)

B	Client: JP Morgan & Chase		Computed By: Charloemphon T.			
	Project Name: Rooftop Solar Program Tranche No: 10		Date: 5/	Date: 5/11/2020		
	Project No: 400127	File No.: 10.00.150111	Verified By:			
	Title: Structural Evaluation of Existing Roof for Proposed Solar PV Array		Date:			
BLACK & VEATCH			Calculation Page No:	43	of	43
	•		Load Comparison IBC 2018 Version:	2.3		

APPENDIX H REFERENCE CATALOG / BROCHURE

(NOT USED)