STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

OLD MYERS SOLAR PROJECT

TOWN OF WAPPINGER DUTCHESS COUNTY, NEW YORK

IN COMPLIANCE WITH THE

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION GENERAL PERMIT GP-0-20-001 FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITIES

Prepared for:

NY Solar 1001 LLC C/O Lightstar Renewables, LLC 501 Boylston Street Boston, MA 02116

Prepared by:

TRC 249 Western Avenue Augusta, ME 04330

APRIL 2023

Table of Contents:

1.0	Introduction1				
2.0	Regulatory Requirements1				
3.0	Permit Coverage Information				
4.0	SWP	PP Amendments	2		
5.0	Project Site Information				
	5.1	Soils Classification	3		
	5.2	Rainfall Information	3		
6.0	Contr	ract Documents	3		
7.0	Perso	onnel Contact List	4		
8.0	SWP	PP Construction Requirements and Sequencing	4		
9.0	Storn	nwater Management and Pollution Controls	7		
	9.1	Potential Impacts for Stormwater Contamination	7		
	9.2	Protection of Existing Vegetation	8		
	9.3	Temporary Erosion and Sediment Controls	8		
		9.3.1 Temporary Stockpiling			
		9.3.2 Temporary Spoil Stockpiling	9		
		9.3.3 Timber Construction Matting	10		
	9.4	Temporary Stabilization for Frozen Conditions	10		
10.0	Post-	Construction Stormwater Management			
	10.1	Design Justification	11		
	10.2	Stormwater Quality Analysis	12		
		10.2.1 Water Quality Volume (WQv) Analysis	12		
		10.2.2 Runoff Reduction Volume (RRv) Analysis	13		
		10.2.3 Stormwater Management Practice (SMP) Analysis			
	10.3	Post-Construction Stormwater Control Practices Utilized	14		
	10.4	Stormwater Quantity Analysis			
11.0	Cons	truction Pollution Prevention			
	11.1 Management of Spills and Releases1				
	11.2	Construction Housekeeping			
		11.2.1 Material Stockpiling			
		11.2.2 Staging, Storage, and Marshalling Areas			
		11.2.3 Equipment Cleaning and Maintenance	18		
		11.2.4 Concrete Washout Areas	18		
		Waste Management			
12.0	Maint	tenance Inspections and Reporting Requirements	19		
	12.1	Pre-Construction Inspection			
12.2 Construction Phase Inspections		Construction Phase Inspections			
	12.3	Temporary Construction Activity Suspension			
	12.4	Partial Project Completion			
	12.5	Reporting Requirements			
	12.6	Post-Construction Operation and Maintenance Record Archiving			
	12.7	Records Archiving	21		

List of Tables:

Table 1 Rainfall Event Quantities	. 3
Table 2 Proposed Erosion and Sediment Control Measures	
Table 3 Calculated WQv	13
Table 4 RRv Reduction by Soil Type	13
Table 5 Peak Discharge Rate (cfs) Comparison	16

Appendices:

Appendix A – SWPPP Permit Coverage Forms

- Notice of Intent (NOI)
- SWPPP Preparer Certification Form
- Owner/Operator Certification Form
- MS4 SWPPP Acceptance Form
- NYSDEC NOI Acknowledgement Letter for Permit Coverage
- Notice of Termination (NOT) Form

Appendix B – General Permit GP-0-20-001

Appendix C – Construction Personnel Contact List

- Construction Contact List
- Contractor Certification Form

Appendix D – Agency Correspondence and Notifications

Appendix E – Environmental Background Information

- Figure 1: Site Location Map
- Environmental and Cultural Resource Information
- State Historic Preservation Office (SHPO) Cultural Resource Information System (CRIS) Maps
- USDA NRCS Soil Resource Report
- Northeast Regional Climate Center's Extreme Precipitation Tables

Appendix F – Preliminary Construction Drawings

Appendix G – Standards and Specifications for Erosion and Sediment Controls Appendix H – Spill Cleanup and Reporting Guidance

- NYSDEC Technical Field Guidance Spill Reporting and Initial Notification Requirements
- NYSDEC CP-51: Soil Cleanup Guidance

Appendix I – Post-Construction Operation and Maintenance (O & M) Manual Appendix J – Pre-Development Modeling

- Pre-Development Subcatchment Map
- Pre-Development HydroCAD Model

Appendix K – Post-Development Modeling

- Post-Development Subcatchment Map
- Post-Development HydroCAD Model

Appendix L – Stormwater Design Calculations

Appendix M – SWPPP Amendments

Appendix N – SWPPP Inspection Reports

- Blank SWPPP Inspection Form
- Completed SWPPP Inspection Reports

1.0 Introduction

This Stormwater Pollution Prevention Plan (SWPPP) has been prepared by TRC Engineers, Inc. (TRC) for NY Solar 1001 LLC regarding construction activities associated with the Old Myers Solar Project (the Project).

The purpose of this SWPPP is to establish requirements and instructions for the management of construction-related stormwater discharges from the Project Site. Erosion and sediment controls have been designed and shall be installed and maintained to minimize the discharge of pollutants and prevent a violation of the water quality standards.

2.0 Regulatory Requirements

This SWPPP has been prepared in accordance with the "New York State Department of Environmental Conservation (NYSDEC) State Pollution Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity" General Permit GP-0-20-001, effective January 29, 2020 through January 28, 2025. The NYSDEC requires coverage under GP-0-20-001 for any "construction activities involving soil disturbances of one or more acres; including disturbances of less than one acre that are part of a larger common plan of development or sale that will ultimately disturb one or more acres of land; excluding routine maintenance activity that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility."

The Project is classified as a renewable energy project with an increase in impervious cover, per Table 2 of GP-0-20-001 Appendix B. The Project involves construction activities that require the preparation of a SWPPP that includes post-construction stormwater management practices designed in conformance with Part III.B.2 of the permit. A copy of the General Permit GP-0-20-001 is provided in Appendix B of this SWPPP.

The Project shall comply with all applicable local, state, and federal regulations. The Project requires a review by the town under New York's State Environmental Quality Review (SEQR) Act permitting process.

3.0 Permit Coverage Information

This SWPPP serves as the minimum requirements necessary to address soil exposure and stormwater management during construction activities. This SWPPP is a living document that may be amended for unforeseen circumstances. If unanticipated site conditions warrant changes or additions to existing practices, the Owner/Operator and the Contractor(s), in consultation with the Qualified Inspector or Project Engineer, will be required to implement those measures in accordance with the New York State Standards and Specifications for Erosion and Sediment Control (SSESC) and the New York State Stormwater Management Design Manual (SMDM) and amendments to the SWPPP shall be made as appropriate. The SWPPP and associated documentation must be kept current to ensure the erosion and sediment control practices are accurately documented.

In accordance with GP-0-20-001, documented site inspections will be performed to ensure the required erosion and sediment control measures have been installed properly and are in good condition. Inspections will occur for the duration of construction, until earth-disturbing construction activities have ceased, and final stabilization has been achieved.

4.0 SWPPP Amendments

This SWPPP has been prepared in accordance with the General Permit, SSESC and the SMDM. The SWPPP and associated documents must be kept current at all times. Amendments to the SWPPP and associated documents, including construction drawings, should be made:

- Whenever the current provisions are ineffective in minimizing impacts to the stormwater discharge from the Project Site;
- Whenever there is a change in design or construction activities and sequencing that has or could have an impact to the stormwater discharge; and
- To address deficiencies or issues identified during monitoring and inspection.

Refer to GP-0-20-001 for additional information on SWPPP amendment procedures and requirements. Amendments to the SWPPP shall be documented in Appendix M.

5.0 **Project Site Information**

The Project Site is located west of Myers Corners Road in the Town of Wappinger, Dutchess County, New York. The Project Site is located within the NYSDEC Region 3 jurisdiction and the 2019 Wappinger, NY, United States Geological Survey (USGS) 7.5 Minute Topographic Quadrangle. The Project Site location is depicted in Figure 1 of Appendix E.

The Project proposes the installation of a solar array within an approximate 13.8-acre disturbance area. The general scope of work for the Project which may result in soil disturbance including, but is not limited to, clearing and grubbing, grading, and installation of equipment pads, electric utility infrastructure, installation of a limited-use pervious access road, perimeter fencing installation, landscaping, and temporary erosion and sediment control installation and maintenance.

The existing groundcover of the Project Site is composed primarily of grass lawn, hay pastures, and forested hedgerows. Delineated wetlands and natural resources were identified on the property outside of the limits of disturbance. Land use of abutting parcels consists of developed land to the west, agricultural land to the east, and a transmission line and forested land to the north. The site topography is generally less than 10% in slope at the central and southern portions of the site, with a ridge located at the north of the site where slopes exceed 3H:1V. The Existing Conditions & Site Preparation Plan included with the Construction Drawings in Appendix F includes a slope analysis that denotes areas at slope ranges from 0 to 10%, 10% to 15%, and >15%. The Site generally slopes to the north and has elevation ranges from approximately 178 to 203 feet above mean sea level. Refer to the Construction Drawings in Appendix F and for additional Project Site land cover, environmental resource, and topographic information.

Runoff from the Project Site drains to Wappinger Creek, a tributary of the Hudson River, through a series of unnamed streams. The Project Site does not discharge to a closed storm sewer associated with the Wappinger MS4, however Wappinger's review and approval of the SWPPP is required. The MS4 SWPPP Acceptance form documenting Wappinger MS4 review and approval is included in Appendix A. The Project Site does not directly discharge to a 303(d) waterbody segment identified in Appendix E of GP-0-20-001, and is not located within a restricted watershed, an AA or AA-s watershed, or a Sole Source Aquifer (SSA).

5.1 Soils Classification

Review of the United States Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) Web Soil Survey indicated the predominant soil series mapped within the Project Site are Dutchess-Cardigan Complex – Undulating, Rocky (DwB),, Hydrologic Soil Group (HSG) rating C; and Dutchess-Cardinan Complex – Rolling, Rocky (DwC), HSG rating C. The Soil Conservation Service defines the HSGs as follows:

- <u>Type A Soils</u>: Soils having a high infiltration rate (low runoff potential).
- <u>Type B Soils</u>: Soils having a moderate infiltration rate.
- <u>Type C Soils</u>: Soils having a slow infiltration rate.
- <u>Type D Soils</u>: Soils having a very slow infiltration rate (high runoff potential).

Refer to Appendix E for the USDA NRCS Soil Resource Report for the Project Site.

5.2 Rainfall Information

Project specific rainfall information for the 90% rainfall event was obtained from Figure 4.1 of the SMDM. The 90% rainfall event is used to determine the volume (WQv) of runoff generated from the 90th percentile (90%) rainfall event. Rainfall data for the 1-, 10-, and 100-year rainfall events was obtained from the Northeast Regional Climate Center's Extreme Precipitation Tables. These values were used to evaluate the pre- and post-development stormwater hydraulic and hydrologic characteristics. Table 1, below, details the 24-hour rainfall amounts for the Project Site.

Rainfall Event	24-Hour Rainfall Amount (inches)
90%	1.40
1-Year	2.61
10-Year	4.67
100-Year	8.20

Table 1	– Rainfall	Event	Quantities
---------	------------	-------	------------

The precipitation information obtained from the Northeast Regional Climate Center is included in Appendix E.

6.0 Contract Documents

The Contractor is responsible for the implementation of this SWPPP throughout construction, as well as the installation, construction, repair, replacement, inspection and maintenance of erosion and sediment control practices. Each Contractor shall sign the Contractor Certification Form provided in Appendix C prior to the commencement of construction activities.

This SWPPP and associated documentation, including but not limited to, a copy of the GP-0-20-001, NOI, NYSDEC NOI Acknowledgement Letter, Contractor Certification Form, Construction

Drawings, inspection reports, and permit eligibility forms, must be maintained in a secure location for the duration of the Project.

7.0 Personnel Contact List

The Construction Personnel Contact List for the Project is provided in Appendix C. The listed personnel are responsible for ensuring compliance with the SWPPP and associated permit conditions. Personnel responsibilities include, but are not limited to, the following:

- Implement the SWPPP;
- Oversee maintenance practices identified in the SWPPP;
- Conduct or provide for inspection and monitoring activities;
- Identify potential erosion, sedimentation, and pollutant sources during construction and ensure issues are addressed appropriately and in a timely manner;
- Identify necessary amendments to the SWPPP and ensure proper implementation; and,
- Document activities associated with the implementation of this SWPPP and supporting documents.

Refer to GP-0-20-001 for information regarding specific personnel responsibilities.

8.0 SWPPP Construction Requirements and Sequencing

This section provides the Owner/Operator and the Contractor with a suggested order of construction that will minimize erosion and the transport of sediments. The individual objectives of the construction techniques described herein shall be considered an integral component of the Project design. The construction sequence is not intended to prescribe definitive construction methods and should not be interpreted as a construction specification document.

The Contractor shall follow the general principles outlined below throughout the construction phase:

- Protect and maintain existing vegetation wherever possible. Filter Strips used for stormwater management treatment shall be marked in the field and protected throughout construction;
- Minimize the area of disturbance;
- To the extent possible, route unpolluted flows from upgradient areas around disturbed areas;
- Install approved erosion and sediment control devices as early as possible;
- Minimize the time disturbed areas are left un-stabilized; and,
- Maintain erosion and sediment control devices in proper condition.

The Contractor should use the suggested construction sequence and techniques as a general guide and modify the suggested methods and procedures as required to best suit seasonal and

site-specific physical constraints for the purpose of minimizing the environmental impact due to construction.

The Project is anticipated to involve three stages of work: site preparation, construction, and site restoration. Prior to the commencement of construction activities, temporary erosion and sediment control measures shall be installed per the Construction Drawings provided in Appendix F. The Project stages are detailed below.

Stage 1: Project Site Preparation

- Establish access to the Project Site including the stabilized construction entrances and access roads;
- Stake/flag construction limits, staging/storage areas, concrete washout locations, environmentally sensitive areas, vegetated filter strips, and other associated work areas;
- Mark existing utilities and infrastructure;
- Conduct tree clearing and vegetation management, if necessary, and grading of work areas, as required; and,
- Install the erosion and sediment controls as detailed on the Erosion and Sediment Control Plans as soon as possible. Initial earth disturbance should be limited to only what is required for installation of perimeter sediment controls. Once perimeter controls are inplace, the remaining portions of Stage 1 earth disturbances can commence.

Stage 2: Construction

The construction stage of solar array development involves multiple disciplines that typically work in a sequenced approach, i.e. once one discipline is done working in an area the next discipline commences lagging behind the preceding task through project completion. Tasks outlined below are generally the sequence in which work is conducted however, some of the work will be conducted concurrently but in different areas of the site.

- Some grading is proposed in localized areas and as necessary to meet racking tolerances, build suitable access roads, and construct a level area for the small isolated equipment pads. Conduct earthwork as necessary prior to solar array installation;
- Install perimeter fencing and gates;
- Conduct pile driving and/or post installation for array racking;
- Assemble and install single-axis tracker racking frames;
- Module installation and wiring;
- Install tracker motors, DC combiner boxes, and other incidentals of DC system;
- Install low- voltage underground electric cable to equipment pads;
- Construct concrete equipment pads and complete installation of inverters and transformers;
- Install underground medium-voltage AC collector line;

- Construct overhead generation lead collector line and coordinate construction of interconnection equipment with Utility Owner;
- Complete planting of landscaping in accordance with the project specific landscaping plan; and
- Once array construction and significant vehicle traffic ceases, complete construction of limited use pervious haul road surficial stone layer.
- Construction Phasing Plan: Construction phases for major earth disturbance activities have been identified on Sheet G-04 of the Construction Drawings in Appendix F and are as follows:
 - Phase 1: 3.55-acres and consists of clearing of trees and woody vegetation within the proposed limits of disturbance and the grubbing and removal of stumps. Perimeter controls shall be in-place prior to initiating this phase. No work shall be started on subsequent phases until disturbed areas of Phase I are adequately stabilized.
 - Phase 2: 3.35 acres and consists of access road construction and completion of site grading where identified as being required to meet array racking slope requirements. Following completion of earth disturbance associated with this phase, disturbed areas shall be stabilized with seed and mulch.
 - Remaining Earth Disturbance: As indicated on the drawings, the overall limit of work encompasses an area of approximately 13.8 acres. All work will be within these limits. Earth disturbance required for solar array construction is minimal and consists of driving piles, installing fence, and trenching for underground cable installation. Due to the nature of this disturbance no further establishment of phasing will be required.
 - At no point during construction shall earth disturbance exceed 5-acres of active earth disturbance at any time.

Stage 3: Project Site Restoration

- Remove and dispose of Project related waste material at an approved disposal facility;
- Stockpiles are temporary for construction and following initial site stabilization, excess material will be spread evenly within array area and stabilized with seed and mulch. Topsoil shall not be exported from the Project site.
- Prepare soils as needed (restoration of original grade, de-compaction, soil amendments, etc.), and seed and mulching all disturbed areas. Restore disturbed soils per NYSDEC standards and specifications;
- Remove the temporary erosion and sediment controls when 80% of natural vegetative cover has been achieved and erosion issues are no longer present;
- Submit the Notice of Termination (NOT) to the NYSDEC in accordance with the General Permit.

9.0 Stormwater Management and Pollution Controls

Prior to the commencement of construction activities, temporary erosion and sediment controls shall be installed to prevent erosion of the soils and prevent water quality degradation in wetlands and waterbodies. Erosion and sediment controls will be utilized to limit, control, and mitigate construction related impacts. The stormwater management and pollution controls shall include practices that involve runoff control, soil stabilization practices, and sediment control.

The erosion and sediment controls utilized at the Project Site must be installed and maintained in accordance with GP-0-20-001, the SSESC and the SMDM. Improper installation of practices may result in an increase in water quality impacts to nearby waterbodies or sedimentation impacts to undisturbed lands. Deviations from the SSESC and SMDM standards should be discussed with the Qualified Inspector/Qualified Professional prior to utilizing the alternative practice. If the alternative practice is acceptable, documentation is required to detail the reasoning for the alternative practice and the provide evidence that the alternative design is equivalent to the technical standard. The SWPPP shall be amended as appropriate to incorporate the alternative practice. In the event that an alternative practice fails and a standard SSESC practice is required, the Contractor shall install the required practice upon approval from the Qualified Inspector/Qualified Professional and Owner/Operator. The SWPPP shall be amended as appropriate to document changes to the practice.

The following sections detail potential stormwater contamination sources due to construction related activities and the temporary and permanent erosion and sediment controls to be utilized throughout the construction of the Project to mitigate impacts. Refer to the SSESC and SMDM for additional guidance on installation, maintenance and removal.

9.1 Potential Impacts for Stormwater Contamination

Construction activities and processes that result in either increased stormwater runoff or the potential to add pollutants to runoff are subject to the requirements of this SWPPP. These activities may include areas of land disturbed by grading, excavation, construction, or material storage. Water that comes in contact with the surface of the Project Site as a result of precipitation (snow, hail, rain, etc.) is classified as stormwater associated with the Project and is subject to the requirements of this SWPPP.

Construction activities that may negatively impact stormwater include, but are not limited to, the following:

- <u>Tree Clearing and Vegetation Removal</u>: Removal of vegetation can expose and weaken soils and may result in erosion.
- <u>Construction Site Entrance</u>: Vehicles leaving the Project Site can track soils onto public roadways.
- <u>Grading Operations</u>: Exposed soils have the potential for erosion and sedimentation when not stabilized.
- <u>Fugitive Dust</u>: Dust generated by vehicles or from strong winds during a drought period can be deposited in wetlands, waterways, and other environmentally sensitive areas, or may negatively impact the air quality.
- <u>General Site Construction Activities</u>: Maintenance and heavy use of access roads can expose soils, creating significant erosion potential. Soil stockpiling from site

excavations and grading may promote erosion and sedimentation. Dewatering activities may result in concentrated flows and has the potential to increase erosion.

- <u>Construction Vehicles and Equipment</u>: Refueling of vehicles may result in spilling or dripping gasoline and diesel fuel onto the ground. On-site maintenance of excavating equipment may result in hydraulic oil, lubricants, or antifreeze dripping onto the ground. Sediment tracking and the spread of invasive species may occur if construction vehicles are improperly maintained. Ruts caused by equipment can create paths for concentrated water flows.
- <u>Waste Management Practices</u>: Typical construction projects often generate significant quantities of solid waste, such as wrappings, personnel-generated trash and waste, and construction debris.

Proper utilization of staging and storage areas, stockpiling areas, and erosion and sediment controls will mitigate potential impacts to the stormwater. Refer to Section 10.1 for additional information on spill prevention and waste management procedures for the Project.

9.2 **Protection of Existing Vegetation**

Natural vegetation shall be preserved to the maximum extent practicable. Preserving natural vegetation will reduce soil erosion and maintain the inherent integrity of the Project Site. Protection practices may include barrier fencing to prevent equipment and vehicle traffic in vegetated and environmentally sensitive areas. Where tree clearing and vegetation is proposed, grubbing shall only be performed in locations within the array fencing, footprint of access roads, utilities, or in location of proposed grading. Areas of proposed clearing outside of these areas shall be to the ground surface only and stumps shall remain in-place to minimize disturbance of soils. The Applicant will observe seasonal tree clearing restrictions for the Project with all tree clearing occurring between November 1 and March 31.

9.3 Temporary Erosion and Sediment Controls

Temporary erosion and sediment controls shall be utilized to reduce erosion, sedimentation, and pollutants in stormwater discharges, and to prevent impacts to undisturbed areas, natural resources, wetlands, waterbodies, and downstream areas. Both stabilization techniques and structural methods will be utilized, as needed, to meet these objectives.

Temporary erosion and sediment control measures shall be applied during construction to:

- Minimize soil erosion and sedimentation through the stabilization of disturbed areas and removal of sediment from construction site discharges.
- Preserve existing vegetation to the maximum extent practicable and establish permanent vegetation on exposed soils following the completion of soil disturbance activities.
- Minimize the area and duration of soil disturbance through site preparation activities and construction sequencing.

Table 2, below, lists the erosion and sediment controls anticipated to be utilized at the Project Site.

Construction Road Stabilization	Concrete Truck Washout
Dust Control	Protecting Vegetation During Construction
Site Pollution Prevention	Stabilized Construction Access
Temporary Access Waterway Crossing	Winter Stabilization
Check Dam	Flow Diffuser
Grassed Waterway	Lined Waterway
Land grading	Anchored Stabilization Matting
Permanent Construction Area Planting	Mulching
Temporary Construction Area Seeding	Soil Restoration
Compost Filter Sock	Topsoiling
Silt Fence	Geotextile Filter Bag
Straw Bale Dike	Rip Rap Culvert Inlet/Outlet Apron

Table 2 - Proposed Erosion and Sediment Control Measures

The standards and specification for the erosion and sediment control measures listed in Table 2 are provided in Appendix G. Refer to the SSESC and SMDM for the Standards and Specifications of alternate measures and practices, as needed. The temporary erosion and sediment control measures not detailed in the SSESC or SMDM are detailed below.

9.3.1 Temporary Stockpiling

Temporary stockpiling of granular material (gravel, excavated spoils, select backfill, topsoil, etc.) is expected on-site throughout the construction process. Stockpiling of materials is not permitted in areas where health or safety risks are present, or where impacts to water quality may occur. Stockpiling is not permitted in wetland or wetland buffer areas.

Stockpile areas shall be contained and protected with the proper erosion and sediment controls such as silt fencing and mulch. Soil stockpiles shall be stabilized with vegetation, geotextile fabric or plastic covers if not utilized for seven (7) days.

Stockpile areas should be inspected and maintained as needed or directed by the Project Engineer (or Qualified Inspector/Qualified Professional).

9.3.2 Temporary Spoil Stockpiling

Spoil material shall be segregated, conserving topsoil for revegetation and disposing of the inorganic sub-soils. Spoils shall be free of construction debris including foreign chunks of concrete, and other construction-related materials.

A spoil disposal plan shall be developed prior to excavation, including the proposed quantities of spoil and the proposed location(s) and procedures for disposal. Spoils shall not be disposed of within wetlands, waterbodies, agricultural areas, or other environmentally sensitive areas. Excess topsoil is encouraged to be spread within the immediate disturbed areas, including agricultural areas, if the material is free of rocks. Inorganic spoils shall be buried and capped with the previously stripped, native topsoil to ensure revegetation. Additional topsoil may be required to adequately cover the spoil area. If additional space is needed for on-site disposal, the SWPPP shall be amended as appropriate. For spoils needing to be disposed of off-site, the disposal plan shall detail the location of the spoil disposal at an authorized facility off-site.

If the disposal plan does not detail the spoil stockpiling or disposal information, the SWPPP shall be amended as appropriate to document the necessary procedures. The amendment shall include the anticipated amount of spoils, the spoil stockpiling location, and the disposal method and location.

9.3.3 Construction Matting

Construction matting is often utilized to distribute vehicle loads on agricultural, lawn, and wetland areas. The matting aids in reducing rutting, soil compaction, and restoration activities in protected areas. Poorly drained upland soils, such as wetland transitional areas, may be matted to reduce rutting and sediment tracking.

An additional benefit of matting in wetlands is that mats can be arranged to act as a containment surrounding excavations. This may be especially helpful in standing water situations were conventional erosion and sediment controls are not practicable. The Contractor should be cognizant of the hydrology of the area by recognizing water staining and bank full indicators. The Qualified Inspector can assist in this identification.

Headers and stringers shall be used in deeper or open water wetlands to allow wetland inundation under the matted drivable surface. The SWPPP specified wetland access does not account for poorly drained or poorly structured soils that are not wetlands. Transitional areas may experience severe rutting due to high traffic associated with the installation of the wetland access matting. Additional matting is recommended to reduce track out and restoration efforts, however it is not required for access.

Submerged wetland matting can create a "pumping" effect as vehicles pass, resulting in disturbed wetland soils, turbidity and sedimentation. This disturbance is a violation of the associated wetland permits. Although the presence of matting in this situation is still better than the alternative, pumping mats will require additional stabilization and sediment control practices not planned for in the Construction Drawings. Matting will need to be re-installed, or access will be shut down until water recedes to eliminate the erosion concern.

Refer to Appendix G for additional information regarding timber matting.

9.4 Temporary Stabilization for Frozen Conditions

Winter stabilization standards apply to construction activities with ongoing soil disturbance and exposure between November 15th and April 1st. Temporary winter stabilization measures shall be employed prior to frozen conditions, as detailed in the SSESC.

Erosion and sediment control measures shall be inspected to ensure proper performance and winter stabilization function. Repairs should be made as necessary to prevent erosion and sedimentation during thawing or rain events.

10.0 Post-Construction Stormwater Management

The SMDM details a five-step process for the site planning and Stormwater Management Practice (SMP) selection. The steps include the following:

- 1. Site planning to preserve natural site features and reduce impervious cover.
- 2. Calculate the Water Quality Volume (WQv) of the Project Site.
- 3. Meet the Runoff Reduction Volume (RRv) through runoff reduction techniques and SMPs with RRv capacity.
- 4. Use standard SMPs, where applicable, to treat the WQv not reduced through RRv techniques and SMPs with RRv capacity.
- 5. Design for peak volume and runoff rates, where required.

The five steps have been classified as Site Planning to Preserve Natural Features, Water Quality Volume, Runoff Reduction Volume, Channel Protection Volume, and Overbank Flood and Extreme Storm Attenuation. These items will be addressed in the sections below.

10.1 Design Justification

The proposed Project will result in greater than one acre of soil disturbance and results in an increase in impervious surface, therefore post-construction stormwater management practices are required for the Project.

The WQv and stormwater quantity requirements shall be met by projects requiring postconstruction stormwater controls. The SMDM describes the stormwater management practices that may be implemented at the Project Site to aid in the reduction of stormwater effects to newly developed areas. Effects from new development may include changes in runoff volume, flow rates, timing of runoff, habitat destruction, and degradation of receiving waterbodies and downstream areas.

The Project has been classified as a new development site with an increase of approximately 1,486 ft² (0.0341 acres) of impervious cover. The proposed site access roads will use a permeable cross-section not considered by NYSDEC to be an impervious surface, and therefore does not require water quality treatment. The SMDM defines a new development as any land disturbance that is not classified as a redevelopment activity. The SMDM defines redevelopment as the disturbance and reconstruction of existing impervious area, including impervious areas removed from the Project Site within the last five years.

The following site constraints were considered when determining the appropriate stormwater management practices to be implemented on the Project Site:

- Practices cannot impact existing structures or utilities;
- Areas of steep slopes greater than 15%;

• The proposed new development conditions need to mimic the existing runoff patterns to the maximum extent practicable.

The peak runoff rates for the pre-development and post-development conditions have been analyzed to aid in maintaining the pre-development runoff rates. Regulating the runoff rate will minimize the impacts to adjacent and downstream properties and waterbodies and minimize impacts to the stormwater runoff quality.

10.2 Stormwater Quality Analysis

10.2.1 Water Quality Volume (WQv) Analysis

The Project requires treatment of the WQv, which is intended to improve water quality by capturing and treating runoff from small, frequent storm events. The NYSDEC has defined WQv as the volume of runoff generated from the 90th percentile (90%) rainfall event. Practices sized to treat the WQv will capture and treat 90% of all 24-hour rainfall events. The WQv is determined using the following equation:

$$WQ_{v} = \frac{P * R_{v} * A}{12}$$

Where:

- WQv = Water Quality Volume (acre-feet)
- P = 90% Rainfall Event Number, 1.40-in
- Rv = 0.05 + 0.009(I), where I is percent impervious cover
- A = Site Area (acres)

The 90% rainfall event number has been obtained from Figure 4.1 of the SMDM. The WQv is directly correlated to the amount of impervious cover at the Project Site. The calculated WQv for each subcatchment within the Project Site is detailed below and summarized in in Table 3, below.

Subcatchment
$$1S - WQ_v = \frac{1.4 * 0.95 * 0.000ac}{12} = 0.0000 acre - ft$$

Subcatchment
$$2S - WQ_{\nu} = \frac{1.4 * 0.95 * 0.034ac}{12} = 0.00378 acre - ft$$

Subcatchment
$$3S - WQ_v = \frac{1.4 * 0.95 * 0.000 acr}{12} = 0.0000 acr - ft$$

Subcatchment	Calculated Water Quality Volume (WQv)		
Number	ft ³	ac-ft	
1S	0	0	
2S	164.70	0.00378	
3S	0	0	
Total WQv	164.70	0.00378	

Table 3 – Calculated WQv

10.2.2 Runoff Reduction Volume (RRv) Analysis

The RRv is intended to reduce the WQv through infiltration, groundwater recharge, reuse, recycle, evaporation/evapotranspiration of the post-development runoff in order to replicate the pre-development hydrology. Replication of the pre-development hydrology includes maintaining pre-construction infiltration, peak runoff flow, discharge volume and minimizing concentrated flow through the use of runoff control techniques.

The RRv is determined using the following equation:

$$RR_{v} = \frac{[(P)(R_{v}^{*})(A_{i})]}{12}$$

Where:

- RRv = Minimum Runoff Reduction Volume (acre/feet)
- P = 90% Rainfall Event Number
- Rv^{*} = 0.05 + 0.009(I), where I is 100% impervious
- A_i = Impervious cover targeted for runoff reduction, calculated as $A_i = (S)(A_{ic})$
- S = Specific Runoff Reduction Factor (per HSG)
- A_{ic} = Total area of new impervious cover

The runoff reduction techniques have been selected based on the proposed Project use type and the existing site constraints as detailed in Section 10.1, above.

New development Projects that cannot achieve 100% runoff reduction for the WQv due to site limitations, must direct runoff from newly constructed impervious areas to runoff reduction or SMP practices, unless infeasible. The percentage of reduction required is determined from the specific reduction factor (S), which is based on the site's HSG. Table 4, below, details the specific reduction factors per HSG.

HSG	Specific Reduction Factor (S)
A	0.55
В	0.40
С	0.30
D	0.20

Subcatchment 2S is the only subcatchment with proposed impervious surfaces. The RRv for subcatchment 2S is 66 ft³ as demonstrated in the Runoff Reduction Worksheets included in Appendix L.

10.2.3 Stormwater Management Practice (SMP) Analysis

The stormwater management plan must demonstrate that green infrastructure planning and design options were evaluated in order to meet the RRv requirement. The SMDM details acceptable runoff reduction techniques to meet the RRv requirement. The runoff reduction techniques utilized for the Project include:

- <u>Conservation of Natural Areas</u>: Retain the pre-development hydrologic and water quality characteristics of undisturbed natural areas and stream and wetland buffers by restoring and/or permanently conserving these areas on site. This practice will be utilized across the maximum extent practicable.
- <u>Land Surface Cover Maintained as Meadow Under the Arrays</u>: Areas under the arrays will be seeded with a mixture of tall grasses and not mowed, to slow and control stormwater runoff from some areas of a development Project.

10.3 Post-Construction Stormwater Control Practices Utilized

The total area of disturbance for the Project will be approximately 13.8 acres, 1,486 ft² (0.0341 acres) of which will have impervious cover consisting of a central concrete equipment pad and paved driveway apron. The total contributing drainage area for the Project Site, which includes off-site areas, is approximately 32.38 acres.

The composite WQv for the Project Site was calculated to be 165 ft³ for the new development area. The total minimum RRv for the Project Site was calculated to be 66 ft³. The source of the runoff requiring treatment is limited to the concrete equipment pad and paved driveway apron. The runoff from the equipment pad will sheet flow to a grass buffer strip for pre-treatment and eventually drain to an infiltration trench. Grading of the proposed access road directs runoff from the paved apron to the infiltration trench for treatment via a grass channel that provides pretreatment. As demonstrated in the runoff reduction worksheet included in Appendix L, the proposed infiltration trench will be 1.5' deep, 10' wide with a minimum length of 30 ' and will provide sufficient treatment of the WQ and RRv.

10.4 Stormwater Quantity Analysis

The SMDM requires the Project to meet the following separate stormwater quantity criteria:

- <u>Channel Protection Volume (Cpv)</u>: The Cpv requirement is designed to protect stream channels from erosion by providing 24 hours of extended detention for a 1-year, 24-hour storm event.
- <u>Overbank Flood Control (Qp)</u>: The Qp requirement is designed to prevent an increase in frequency and magnitude of out-of-bank flooding generated by urban development. The overbank control requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate to pre-development rates.

• <u>Extreme Flood Control (Qf):</u> The Qf requirement is designed to prevent the increased risk of flood damage from large storm events, maintain boundaries of the predevelopment 100-year floodplain, and protect the physical integrity of the stormwater management practices. The extreme flood control requires storage to attenuate the post-development 100-year, 24-hour peak discharge rate to pre-development rates.

Stormwater runoff was estimated using HydroCAD, Version 10.20-2d. HydroCAD software is based on methodologies developed by the USDA NRCS, namely "Urban Hydrology for Small Watersheds", Technical Release 55 and Technical Release 20 (TR-50 and TR-20, respectively), in conjunction with other hydrologic and hydraulic calculations. Based on site specific information, including land cover, slopes, soils, and rainfall data, the program calculates inflow and outflow hydrographs for subcatchments, reach routing, and pond routing.

For the HydroCAD analysis, the Project Site was divided by watershed and drainage systems, which contribute to the overall stormwater network. The watersheds and drainage systems were classified by the following components:

- Subcatchment: Utilized to model the runoff from a given area of land.
- Pond: Used to model a reservoir, dam, catch basin, manhole, drywell, storage chamber, vault, or other impoundment that fills with water. Ponds may empty through a weir, culvert, orifice, or other outlet device.
- Reach: Used to perform independent routing through an open channel or overland flows.
- Link: A multi-purpose node used to link a hydrograph to another system.

The pre-development and post-development conditions for the Project Site were divided into three subcatchments, which depict the watershed conditions, methods of collection, conveyance, points of discharge and topography. In addition, the drainage pattern, drainage structures, soil types, and ground covers are utilized to analyze the rate of runoff in the existing and proposed conditions. The subcatchments include off-site contributing areas as determined by the site topography and site features. The pre-development Project Site was divided into three subcatchments and the post-development Project Site was divided into three subcatchments.

In order to compare the pre-development and post-development runoff conditions, design points were selected across the Project Site. The overall bounds of the study area and study points remain unchanged from the pre-development condition. The following design points were selected for the Project Site in both the pre-development and post-development conditions:

Design Point 1 (DP1):

Design Point 1 encompasses subcatchment 1S and is located at the northern boundary of the Project site. Stormwater reaches DP1 via overland flow through the existing field and then through the adjacent forested area via a series of wetlands and a jurisdictional stream. Land-use directly downgradient of DP1 is undeveloped forested area.

Design Point 2 (DP2):

Design Point 2 encompasses subcatchment 2S and is located at the eastern boundary of the Project site. Stormwater reaches DP2 via overland flow through the existing field. The area immediately downgradient of DP2 is an agricultural field.

Design Point 3 (DP2):

Design Point 3 encompasses subcatchment 3S and is located at the southwestern boundary of the Project site. Stormwater reaches DP3 via overland flow through the existing field and then through the adjacent forested area. The area immediately downgradient of DP3 is a transmission corridor with significant undergrowth. The area directly adjacent to DP3 is a commercial parking lot servicing multiple businesses.

The pre- and post-development conditions were evaluated at each design point for the 1-, 10-, and 100-year storm events. Table 5, below, details the pre- and post-development peak discharge rates for each design point and storm event analyzed.

Design	1-Year Rainfall Event		10-Year Ra	infall Event	100-Year Ra	ainfall Event
Point	Pre-	Post-	Pre-	Post-	Pre-	Post-
DP1	0.4	0.4	5.7	5.7	23.3	23.3
DP2	0.5	0.4	5.8	5.5	20.8	20.4
DP3	0.5	0.4	3.5	3.4	11.0	10.8

Table 5 - Peak Discharge Rate (cfs) Comparison

The runoff model demonstrates that the proposed Project will not alter the hydrologic or hydraulic characteristics of the Project Site, therefore negative impacts to downstream areas due to this Project are not anticipated. Subcatchment mapping and the HydroCAD model are provided for the pre-development condition in Appendix J, and for the post-development condition in Appendix K. As a result, the construction of structural BMPs to manage stormwater quantity will not be provided for this development.

11.0 Construction Pollution Prevention

Proper material storage, handling, and disposal practices shall be implemented during construction to reduce the risk of exposure of materials and hazardous substances to stormwater and environmental resources. The storage, handling, and disposal procedures to be enforced by the Owner/Operator, Contractor(s) and the Qualified Inspector are described below.

11.1 Management of Spills and Releases

The Owner/Operator must be notified in the event of a non-stormwater (fuel, oil, chemical, etc.) spill or release to ensure proper reporting and clean up. The Owner/Operator shall proceed as appropriate in accordance with the Owner/Operator's, local, state, and federal environmental policies and procedures.

A spill or release shall be reported to the NYSDEC Spill Hotline (1-800-457-7362), as applicable, within two hours of the release. The Contractor is responsible for retaining documentation containing the NYS spill number and spill information to provide to the

Owner/Operator and the Qualified Inspector. The Contractor is responsible for the cleanup and response actions, in accordance with the on-site spill prevention procedures manual. Contaminated soil shall be removed from the Project Site and disposed of in accordance with the product specific Safety Data Sheets (SDS) and environmental guidance.

Potential pollutant sources are likely to be stored on the construction site. Bulk petroleum storage (1,100 gallon above ground tank and/or 110 below ground tank) and chemical storage (185 gallon above ground tank and/or any below ground tank) shall not be present onsite. Construction materials typically present on construction sites, as noted in the National Pollutant Discharge Elimination System (NPDES) Construction General Permit, include, but are not limited to, the following:

- <u>Building Products:</u> Asphalt sealants, copper flashing, roofing materials, adhesives, concrete admixtures, and gravel and/or mulch stockpiles;
- <u>Chemicals:</u> Pesticides, herbicides, insecticides, fertilizers, and landscape materials;
- <u>Petroleum Products:</u> Diesel fuel, oil, hydraulic fluids, gasoline, etc.;
- <u>Hazardous or Toxic Waste:</u> Paints, caulks, sealants, fluorescent light ballasts, solvents, petroleum-based products, wood preservatives, additives, curing compounds, and acids;
- <u>Sanitary Facilities:</u> Portable toilets; and,
- <u>Construction Debris:</u> Fill, vegetative debris, stumps, and construction waste.

Specific quantities cannot be estimated until construction methodology and contractor(s) are secured for construction.

Spill cleanup and response guidance is provided in Appendix H of this SWPPP.

11.2 Construction Housekeeping

The Owner/Operator or the Contractor shall coordinate with local fire officials regarding onsite fire safety and emergency response. The Contractor shall keep the Construction Supervisor and the Qualified Inspector/Qualified Professional aware of chemicals and waste present on site. The Contractor shall periodically conduct safety inspections at the Project Site to identify housekeeping issues and employ spill prevention procedures.

11.2.1 Material Stockpiling

Material resulting from clearing and grubbing, grading, and other construction activities, or new material delivered to the Project Site, shall be stockpiled upslope of disturbed areas. The stockpile areas shall have the proper erosion and sediment controls installed to prevent the migration of sediments and materials.

11.2.2 Staging, Storage, and Marshalling Areas

Construction materials and equipment should be stored in designated staging areas as indicated on the Construction Drawings or as directed by the Project Engineer (or Qualified

Inspector). The staging, storage, and marshalling areas should be located in an area which minimizes impacts to stormwater quality.

Chemicals, solvents, fertilizers, and other toxic materials must be stored in waterproof containers and must be kept in the proper storage facilities, except during use or application. Runoff containing such materials must be collected and disposed of at an approved solid waste or chemical disposal facility.

Bulk storage of materials will be staged at the Project marshalling yard per SDS specification and Environmental Health and Safety Standards, whichever is more restrictive. Contractor marshalling yards may be associated with other projects not covered under this SWPPP and General Permit. If the marshalling area is associated with this SWPPP, the yard shall be inspected by the Qualified Inspector until Project related activities have ceased. A Qualified Inspector shall inspect the marshalling yard to assess for environmental impacts prior to and throughout its use. If additional marshalling yards are required, they must abide by this SWPPP and GP-0-20-001. Amendments shall be made to the SWPPP, as necessary, for the additional marshalling areas.

11.2.3 Equipment Cleaning and Maintenance

All on-site construction vehicles, including employee vehicles, shall be monitored for leaks and shall receive regular preventative maintenance to reduce the risk of leakage. Any equipment leaking oil, fuel, or hydraulic fluid shall be repaired immediately or removed from the Project Site. Construction equipment and Contractor personal vehicles shall be parked, refueled and serviced at least 100 feet from a wetland, waterbody, or other ecologically sensitive area, at an upland location away from conveyance channels, unless approved by the Qualified Inspector/Qualified Professional.

Where there is no reasonable alternative, refueling may occur within these setbacks, but only under the observation of the Qualified Inspector or Trained Contractor and after proper precautions are taken to prevent an accidental spill. The Contractor shall take precautions to ensure that drips, spills, or seeps do not enter the ground. The use of absorbent towels and/or a portable basin beneath the fuel tank is recommended. Refueling activities shall be performed under continual surveillance with extreme care. In the event of a release, the spill shall be promptly cleaned up in accordance with the spill response and clean up procedures.

Petroleum products and hydraulic fluids that are not in vehicles shall be stored in tightly sealed containers that are clearly labeled. All gasoline and fuel storage vessels with greater than a 25-gallon capacity must have secondary containment constructed of an impervious material and be capable of holding 110% of the vessel capacity.

11.2.4 Concrete Washout Areas

Designated concrete washout areas should be provided as needed to allow concrete trucks to wash out or discharge surplus concrete and wash water on site. The concrete washout areas shall be a diked impervious area, located a minimum of 100 feet from a drainage way, waterbody, or wetland area. The concrete washout areas should be designed to prevent contact between the concrete wash and stormwater. The concrete washout areas shall have the proper signage to indicate the location of the facility. The Contractor is responsible for the maintenance of the concrete washout areas. Waste

collected at the concrete washout areas shall be disposed of as non-hazardous construction waste material.

The washout facility should have sufficient volume to contain the concrete waste resulting from washout and a minimum freeboard of 12 inches. The washout areas should not be filled beyond 95% capacity and shall be cleaned out once 75% capacity has been met unless a new facility has been constructed. Refer to the SSESC and SMDM for guidance on the construction and use of concrete washout areas.

All concrete waste shall be removed from the site when stable. In no instance should concrete washout be buried onsite.

11.3 Waste Management

The Contractor shall comply with all required regulations governing the on-site management and off-site disposal of solid and hazardous waste generated during construction of the Project. Substances and materials with the potential to pollute surface and groundwaters must be handled, controlled, and contained as appropriate to ensure they do not discharge from the Project Site.

A solid waste management program will be implemented to support proper solid waste disposal and recycling practices. Solid waste and debris that cannot be recycled, reused, or salvaged shall be stored in on-site containers for off-site disposal. The containers shall be emptied periodically by a licensed waste transport service and hauled away from the site for proper disposal. No loose materials shall be allowed at the Project Site and all waste material shall be disposed of promptly and properly. The burning of crates, waste, and other refuse is not permitted.

If a hazardous material spill occurs, it must be contained and disposed of immediately. Contaminated soil shall be removed from the Project Site and disposed of in accordance with product specific SDS and associated guidelines. Reporting spills to the NYSDEC may be required per 17 New York Code, Rules and Regulations (NYCRR) 32.3 and 32.4, and the Environmental Conservation Law (ECL) 17-1734.

12.0 Maintenance Inspections and Reporting Requirements

12.1 Pre-Construction Inspection

A site assessment shall be conducted by the Qualified Inspector prior to commencement of construction activities to ensure erosion and sediment controls have been adequately and appropriately installed. The Contractor is responsible for contacting the Qualified Inspector for the pre-construction inspection following the installation of the erosion and sediment control measures.

12.2 Construction Phase Inspections

A Qualified Inspector shall conduct regular site inspections for the implementation of this SWPPP through final stabilization of the Project Site. Inspections shall occur at an interval of once every seven calendar days unless greater than five acres of soil is disturbed at any one time or if the Project Site directly discharges to a 303(d) waterbody segment or is located in

one of the watersheds listed in Appendix C of GP-0-20-001, in which inspections shall occur at least twice per every seven calendar days. The two inspections shall be separated by a minimum of two full calendar days. Written authorization from the NYSDEC is required prior to disturbance of greater than five acres. If a portion of the Project Site is permanently stabilized, inspections can cease in that area as long as the condition has been documented by amending the SWPPP.

The Qualified Inspector shall conduct site inspections to assess the performance of the erosion and sediment controls and identify areas requiring modification or repair. The Qualified Inspector shall complete an inspection report following each inspection.

The Owner/Operator and the Contractor(s) must ensure the erosion and sediment control practices implemented at the Project Site have been maintained in accordance with GP-0-20-001, the SSESC and SMDM. The trained Contractor shall regularly inspect the erosion and sediment control practices and pollution prevention measures to ensure they are being maintained in effective operating condition at all times. Within one business day of the completion of an inspection, the qualified inspector shall notify the owner or operator and contractor of any corrective actions that need to be taken. The contractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.

The Qualified Inspector/Qualified Professional shall inspect the debris removal on a continual basis during construction to ensure proper management and disposal. When construction and restoration are complete, the Contractor is responsible for ensuring the Project Site is free of all construction debris and materials.

12.3 Temporary Construction Activity Suspension

The Contractor must temporarily stabilize all disturbed areas prior to temporary suspension of construction activities. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and the appropriate temporary stabilization measures have been installed and applied to all disturbed areas, the Qualified Inspector shall begin conducting site inspections in accordance with Part IV.C.2 of GP-0-20-001. The trained Contractor may cease the regular maintenance inspections until soil disturbance activities resume.

The Owner/Operator must notify the NYSDEC Division of Water (DOW) Program contact at the Regional Office in writing prior to reducing the frequency of inspections. Correspondence with the NYSDEC DOW shall be included in Appendix D of this SWPPP.

12.4 Partial Project Completion

Construction sites where soil disturbance activities have been shut down with partial Project completion, the Qualified Inspector can stop conducting inspections once all disturbed areas have achieved final stabilization in conformance with this SWPPP.

The Owner/Operator must notify the NYSDEC DOW Program contact at the Regional Office in writing prior to shut down. Correspondence with the NYSDEC DOW shall be included in Appendix D of this SWPPP.

If soil disturbance activities have ceased for two years from the date of shutdown, the Owner/Operator shall have the Qualified Inspector complete a final inspection to certify final stabilization has been achieved and all temporary erosion and sediment control measures have been removed. The Owner/Operator shall complete the NOT form and submit the form to the NYSDEC. A copy of the completed NOT shall be included in Appendix A of this SWPPP.

12.5 Reporting Requirements

Inspection and maintenance reports shall be prepared in accordance with GP-0-20-001 from the commencement of construction activities until the NOT has been submitted to the NYSDEC. The Qualified Inspector shall provide a copy of the completed inspection report to the Owner/Operator and the Contractor(s) within one business day of inspection. A copy of the inspection report shall be included Appendix N of the on-site SWPPP. A blank SWPPP Inspection Form is provided in Appendix N.

12.6 Post-Construction Operation and Maintenance Record Archiving

Post-construction operation and maintenance (O&M) activities shall be performed in accordance with the O&M Manual provided in Appendix I of this SWPPP and the requirements outlined in the Section 3.5 of the SMDM. Post-construction operation and maintenance shall occur once stormwater management practices have been installed and are in operation, and the disturbed areas have achieved final stabilization.

12.7 Records Archiving

The Owner/Operator shall retain a copy of the SWPPP, permit coverage forms and associated documentation that were prepared in conjunction with GP-0-20-001 for a period of at least five years from the date that the NYSDEC received the competed NOT.

Appendix A – SWPPP Permit Coverage Forms

- Notice of Intent (NOI) -

- SWPPP Preparer Certification Form -

- Owner/Operator Certification Form -

-MS4 SWPPP Acceptance Form

- NYSDEC NOI Acknowledgement Letter for Permit Coverage -

- Notice of Termination (NOT) Form -

Appendix A – Notice of Intent (NOI)

NOI for coverage under Stormwater General Permit for Construction Activity

version 1.35

(Submission #: HPS-AXBG-FNENZ, version 1)

Details

Originally Started ByJack PacentAlternate IdentifierOld Myers Solar ProjectSubmission IDHPS-AXBG-FNENZSubmission ReasonNewStatusDraft

Form Input

Owner/Operator Information

Owner/Operator Name (Company/Private Owner/Municipality/Agency/Institution, etc.) NY Solar 1001 LLC

Owner/Operator Contact Person Last Name (NOT CONSULTANT) Bailly

Owner/Operator Contact Person First Name Sam

Owner/Operator Mailing Address Lightstar Renewables, LLC

City Boston

State Massachusetts **Zip** 02116

Phone 6178949461

Email sam.bailly@lightstar.com

Federal Tax ID NONE PROVIDED

Project Location

Project/Site Name Old Myers Solar Project

Street Address (Not P.O. Box) Myers Corners Road

Side of Street North

City/Town/Village (THAT ISSUES BUILDING PERMIT) Wappinger

State NY

Zip 12590

DEC Region 3

County DUTCHESS

Name of Nearest Cross Street

All Angels Hill Road/Myers Corners Road

Distance to Nearest Cross Street (Feet) 2200

Project In Relation to Cross Street South

Tax Map Numbers Section-Block-Parcel 1356896258033764320000

Tax Map Numbers NONE PROVIDED

1. Coordinates

Provide the Geographic Coordinates for the project site. The two methods are:

- Navigate to the project location on the map (below) and click to place a marker and obtain the XY coordinates.

- The "Find Me" button will provide the lat/long for the person filling out this form. Then pan the map to the correct location and click the map to place a marker and obtain the XY coordinates.

Navigate to your location and click on the map to get the X,Y coordinates 41.601413,-73.878275

Project Details

2. What is the nature of this project?

New Construction

3. Select the predominant land use for both pre and post development conditions.

Pre-Development Existing Landuse Pasture/Open Land

Post-Development Future Land Use Other: Solar development

3a. If Single Family Subdivision was selected in question 3, enter the number of subdivision lots. NONE PROVIDED

4. In accordance with the larger common plan of development or sale, enter the total project site acreage, the acreage to be disturbed and the future impervious area (acreage)within the disturbed area.

*** ROUND TO THE NEAREST TENTH OF AN ACRE. ***

Total Site Area (acres) 37.1

Total Area to be Disturbed (acres) 13.8

Existing Impervious Area to be Disturbed (acres)

Future Impervious Area Within Disturbed Area (acres) 0.0341

5. Do you plan to disturb more than 5 acres of soil at any one time? No

6. Indicate the percentage (%) of each Hydrologic Soil Group(HSG) at the site.

A	(%)
0	

B (%) 95.48

C (%)

D (%) 4.52

7. Is this a phased project? Yes

8. Enter the planned start and end dates of the disturbance activities.

Start Date NONE PROVIDED

End Date NONE PROVIDED

9. Identify the nearest surface waterbody(ies) to which construction site runoff will discharge.

Wappinger Creek

9a. Type of waterbody identified in question 9? Stream/Creek Off Site

Other Waterbody Type Off Site Description NONE PROVIDED

9b. If "wetland" was selected in 9A, how was the wetland identified? NONE PROVIDED

10. Has the surface waterbody(ies in question 9 been identified as a 303(d) segment in Appendix E of GP-0-20-001? No

11. Is this project located in one of the Watersheds identified in Appendix C of GP-0-20-001?

No

12. Is the project located in one of the watershed areas associated with AA and AA-S classified waters? No

If No, skip question 13.

13. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as D (provided the map unit name is inclusive of slopes greater than 25%), E or F on the USDA Soil Survey? NONE PROVIDED

If Yes, what is the acreage to be disturbed? NONE PROVIDED

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent area?

No

15. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)? No

16. What is the name of the municipality/entity that owns the separate storm sewer system? NONE PROVIDED

17. Does any runoff from the site enter a sewer classified as a Combined Sewer? No

18. Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? No

19. Is this property owned by a state authority, state agency, federal government or local government? No

20. Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.) No

Required SWPPP Components

21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)? Yes

22. Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? Yes

If you answered No in question 22, skip question 23 and the Post-construction Criteria and Post-construction SMP Identification sections.

23. Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual? Yes

24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by: Professional Engineer (P.E.)

SWPPP Preparer Thomas N. Daniels, PE

Contact Name (Last, Space, First) NONE PROVIDED

Mailing Address 249 Western Ave

City Augusta

State

ME

Zip 04330

Phone 207.620.3757

Email TDaniels@trccompanies.com

Download SWPPP Preparer Certification Form

Please take the following steps to prepare and upload your preparer certification form:

- 1) Click on the link below to download a blank certification form
- 2) The certified SWPPP preparer should sign this form

3) Scan the signed form4) Upload the scanned document<u>Download SWPPP Preparer Certification Form</u>

Please upload the SWPPP Preparer Certification NONE PROVIDED Comment NONE PROVIDED

Erosion & Sediment Control Criteria

25. Has a construction sequence schedule for the planned management practices been prepared? Yes

26. Select all of the erosion and sediment control practices that will be employed on the project site:

Temporary Structural

Construction Road Stabilization Dust Control Silt Fence Stabilized Construction Entrance

Biotechnical None

Vegetative Measures

Mulching Protecting Vegetation Seeding Straw/Hay Bale Dike Topsoiling

Permanent Structural Diversion Grade Stabilization Structure Land Grading

Other NONE PROVIDED

Post-Construction Criteria

* IMPORTANT: Completion of Questions 27-39 is not required if response to Question 22 is No.

27. Identify all site planning practices that were used to prepare the final site plan/layout for the project. NONE PROVIDED

27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).

All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).

28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout). (Acre-feet) 0.00378

29. Post-construction SMP Identification

Use the Post-construction SMP Identification section to identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity that were used to reduce the Total WQv Required (#28).

Identify the SMPs to be used by providing the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use the Post-Construction SMP Identification section to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRv capacity identified in question 29. (acre-feet) 0.0016

31. Is the Total RRv provided (#30) greater than or equal to the total WQv required (#28)?

Yes

If Yes, go to question 36. If No, go to question 32.

32. Provide the Minimum RRv required based on HSG. [Minimum RRv Required = (P) (0.95) (Ai) / 12, Ai=(s) (Aic)] (acre-feet) NONE PROVIDED

32a. Is the Total RRv provided (#30) greater than or equal to the Minimum RRv Required (#32)? NONE PROVIDED

If Yes, go to question 33.

Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the

specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the SWPPP.

If No, sizing criteria has not been met; therefore, NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

33. SMPs

Use the Post-construction SMP Identification section to identify the Standard SMPs and, if applicable, the Alternative SMPs to be used to treat the remaining total WQv (=Total WQv Required in #28 - Total RRv Provided in #30).

Also, provide the total impervious area that contributes runoff to each practice selected.

NOTE: Use the Post-construction SMP Identification section to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question #29. (acre-feet) NONE PROVIDED

Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - provided by the practice. (See Table 3.5 in Design Manual)

34. Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a). NONE PROVIDED

35. Is the sum of the RRv provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? NONE PROVIDED

If Yes, go to question 36.

If No, sizing criteria has not been met; therefore, NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

36. Provide the total Channel Protection Storage Volume (CPv required and provided or select waiver (#36a), if applicable.

CPv Required (acre-feet) NONE PROVIDED

CPv Provided (acre-feet) NONE PROVIDED

36a. The need to provide channel protection has been waived because:

Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (#37a), if applicable.

Overbank Flood Control Criteria (Qp)

Pre-Development (CFS) NONE PROVIDED

Post-Development (CFS) NONE PROVIDED

Total Extreme Flood Control Criteria (Qf)

Pre-Development (CFS) NONE PROVIDED

Post-Development (CFS) NONE PROVIDED

37a. The need to meet the Qp and Qf criteria has been waived because: Downstream analysis reveals that the Qp and Qf controls are not required.

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed? Yes

If Yes, Identify the entity responsible for the long term Operation and Maintenance NONE PROVIDED

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). (See question #32a) This space can also be used for other pertinent project information. NONE PROVIDED

Post-Construction SMP Identification

Runoff Reduction (RR) Techniques, Standard Stormwater Management Practices (SMPs) and Alternative SMPs

Identify the Post-construction SMPs to be used by providing the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

RR Techniques (Area Reduction)

Round to the nearest tenth

Total Contributing Acres for Conservation of Natural Area (RR-1) NONE PROVIDED **Total Contributing Impervious Acres for Conservation of Natural Area (RR-1)** NONE PROVIDED

Total Contributing Acres for Sheetflow to Riparian Buffers/Filter Strips (RR-2) NONE PROVIDED

Total Contributing Impervious Acres for Sheetflow to Riparian Buffers/Filter Strips (RR-2) NONE PROVIDED

Total Contributing Acres for Tree Planting/Tree Pit (RR-3) NONE PROVIDED

Total Contributing Impervious Acres for Tree Planting/Tree Pit (RR-3) NONE PROVIDED

Total Contributing Acres for Disconnection of Rooftop Runoff (RR-4) NONE PROVIDED

RR Techniques (Volume Reduction)

Total Contributing Impervious Acres for Disconnection of Rooftop Runoff (RR-4) NONE PROVIDED

Total Contributing Impervious Acres for Vegetated Swale (RR-5) NONE PROVIDED

Total Contributing Impervious Acres for Rain Garden (RR-6) NONE PROVIDED

Total Contributing Impervious Acres for Stormwater Planter (RR-7) NONE PROVIDED

Total Contributing Impervious Acres for Rain Barrel/Cistern (RR-8) NONE PROVIDED

Total Contributing Impervious Acres for Porous Pavement (RR-9) NONE PROVIDED

Total Contributing Impervious Acres for Green Roof (RR-10) NONE PROVIDED

Standard SMPs with RRv Capacity

Total Contributing Impervious Acres for Infiltration Trench (I-1) .0341 **Total Contributing Impervious Acres for Infiltration Basin (I-2)** NONE PROVIDED

Total Contributing Impervious Acres for Dry Well (I-3) NONE PROVIDED

Total Contributing Impervious Acres for Underground Infiltration System (I-4) NONE PROVIDED

Total Contributing Impervious Acres for Bioretention (F-5) NONE PROVIDED

Total Contributing Impervious Acres for Dry Swale (O-1) NONE PROVIDED

Standard SMPs

Total Contributing Impervious Acres for Micropool Extended Detention (P-1) NONE PROVIDED

Total Contributing Impervious Acres for Wet Pond (P-2) NONE PROVIDED

Total Contributing Impervious Acres for Wet Extended Detention (P-3) NONE PROVIDED

Total Contributing Impervious Acres for Multiple Pond System (P-4) NONE PROVIDED

Total Contributing Impervious Acres for Pocket Pond (P-5) NONE PROVIDED

Total Contributing Impervious Acres for Surface Sand Filter (F-1) NONE PROVIDED

Total Contributing Impervious Acres for Underground Sand Filter (F-2) NONE PROVIDED

Total Contributing Impervious Acres for Perimeter Sand Filter (F-3) NONE PROVIDED

Total Contributing Impervious Acres for Organic Filter (F-4) NONE PROVIDED

Total Contributing Impervious Acres for Shallow Wetland (W-1) NONE PROVIDED

Total Contributing Impervious Acres for Extended Detention Wetland (W-2) NONE PROVIDED **Total Contributing Impervious Acres for Pond/Wetland System (W-3)** NONE PROVIDED

Total Contributing Impervious Acres for Pocket Wetland (W-4) NONE PROVIDED

Total Contributing Impervious Acres for Wet Swale (O-2) NONE PROVIDED

Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY)

Total Contributing Impervious Area for Hydrodynamic NONE PROVIDED

Total Contributing Impervious Area for Wet Vault NONE PROVIDED

Total Contributing Impervious Area for Media Filter NONE PROVIDED

"Other" Alternative SMP? NONE PROVIDED

Total Contributing Impervious Area for "Other" NONE PROVIDED

Provide the name and manufaturer of the alternative SMPs (i.e. proprietary practice(s)) being used for WQv treatment.

Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project.

Manufacturer of Alternative SMP NONE PROVIDED

Name of Alternative SMP NONE PROVIDED

Other Permits

40. Identify other DEC permits, existing and new, that are required for this project/facility. None If SPDES Multi-Sector GP, then give permit ID NONE PROVIDED

If Other, then identify NONE PROVIDED

41. Does this project require a US Army Corps of Engineers Wetland Permit? No

If "Yes," then indicate Size of Impact, in acres, to the nearest tenth NONE PROVIDED

42. If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned. NONE PROVIDED

MS4 SWPPP Acceptance

43. Is this project subject to the requirements of a regulated, traditional land use control MS4?

No

If No, skip question 44

44. Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI? NONE PROVIDED

MS4 SWPPP Acceptance Form Download Download form from the link below. Complete, sign, and upload. MS4 SWPPP Acceptance Form

MS4 Acceptance Form Upload

NONE PROVIDED Comment NONE PROVIDED

Owner/Operator Certification

Owner/Operator Certification Form Download

Download the certification form by clicking the link below. Complete, sign, scan, and upload the form.

Owner/Operator Certification Form (PDF, 45KB)

Upload Owner/Operator Certification Form NONE PROVIDED Comment NONE PROVIDED Appendix A – SWPPP Preparer Certification Form

Department of Environmental Conservation

SWPPP Preparer Certification Form

SPDES General Permit for Stormwater Discharges From Construction Activity (GP-0-20-001)

Project Site Information Project/Site Name

Owner/Operator Information

Owner/Operator (Company Name/Private Owner/Municipality Name)

Certification Statement – SWPPP Preparer

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First name

MI Last Name

Signature

Date

Appendix A – Owner/Operator Certification Form

Department of Environmental Conservation

Owner/Operator Certification Form

SPDES General Permit For Stormwater Discharges From Construction Activity (GP-0-20-001)

Project/Site Name:			
eNOI Submission Number:			
eNOI Submitted by:	Owner/Operator	SWPPP Preparer	Other

Certification Statement - Owner/Operator

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Owner/Operator First Name

M.I. Last Name

Signature

Date

Appendix A – MS4 SWPPP Acceptance Form

NEW YORK STATE OF OPPORTUNITYDepartment of Environmental ConservationNYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505				
MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form for Construction Activities Seeking Authorization Under SPDES General Permit				
*(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)				
I. Project Owner/Operator Information				
1. Owner/Operator Name:				
2. Contact Person:				
3. Street Address:				
4. City/State/Zip:				
II. Project Site Information				
5. Project/Site Name:				
6. Street Address:				
7. City/State/Zip:				
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information				
8. SWPPP Reviewed by:				
9. Title/Position:				
10. Date Final SWPPP Reviewed and Accepted:				
IV. Regulated MS4 Information				
11. Name of MS4:				
12. MS4 SPDES Permit Identification Number: NYR20A				
13. Contact Person:				
14. Street Address:				
15. City/State/Zip:				
16. Telephone Number:				

MS4 SWPPP Acceptance Form - continued

V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative

I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.

Printed Name:

Title/Position:

Signature:

Date:

VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

Appendix A – NYSDEC NOI Acknowledgement Letter for Permit Coverage

Appendix A – Notice of Termination (NOT) Form

New York State Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505 *(NOTE: Submit completed form to address above)* NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity				
Please indicate your permit identification number: NYR				
I. Owner or Operator Information				
1. Owner/Operator Name:				
2. Street Address:				
3. City/State/Zip:				
4. Contact Person:	4a.Telephone:			
4b. Contact Person E-Mail:				
II. Project Site Information				
5. Project/Site Name:				
6. Street Address:				
7. City/Zip:				
8. County:				
III. Reason for Termination				
9a. □ All disturbed areas have achieved final stabilization in accord SWPPP. *Date final stabilization completed (month/year):	ordance with the general permit and			
9b. □ Permit coverage has been transferred to new owner/operator. Indicate new owner/operator's permit identification number: NYR (Note: Permit coverage can not be terminated by owner identified in I.1. above until new owner/operator obtains coverage under the general permit)				
9c. □ Other (Explain on Page 2)				
IV. Final Site Information:				
10a. Did this construction activity require the development of a S stormwater management practices? □ yes □ no (If no	SWPPP that includes post-construction , go to question 10f.)			
10b. Have all post-construction stormwater management practices included in the final SWPPP been constructed? yes no (If no, explain on Page 2)				
10c. Identify the entity responsible for long-term operation and maintenance of practice(s)?				

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

10d. Has the entity responsible for long-term operation and maintenance been given a copy of the operation and maintenance plan required by the general permit? □ yes □ no

10e. Indicate the method used to ensure long-term operation and maintenance of the post-construction stormwater management practice(s):

□ Post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain practice(s) have been deeded to the municipality.

Executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s).

□ For post-construction stormwater management practices that are privately owned, a mechanism is in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the owner or operator's deed of record.

□ For post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university or hospital), government agency or authority, or public utility; policy and procedures are in place that ensures operation and maintenance of the practice(s) in accordance with the operation and maintenance plan.

10f. Provide the total area of impervious surface (i.e. roof, pavement, concrete, gravel, etc.) constructed within the disturbance area?

(acres)

11. Is this project subject to the requirements of a regulated, traditional land use control MS4? $\hfill\square$ yes $\hfill\square$ no

(If Yes, complete section VI - "MS4 Acceptance" statement

V. Additional Information/Explanation: (Use this section to answer questions 9c. and 10b., if applicable)

VI. MS4 Acceptance - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative (Note: Not required when 9b. is checked -transfer of coverage)

I have determined that it is acceptable for the owner or operator of the construction project identified in question 5 to submit the Notice of Termination at this time.

Printed Name:

Title/Position:

Signature:

Date:

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

VII. Qualified Inspector Certification - Final Stabilization:				
I hereby certify that all disturbed areas have achieved final stabilization as of the general permit, and that all temporary, structural erosion and sedim been removed. Furthermore, I understand that certifying false, incorrect of violation of the referenced permit and the laws of the State of New York a criminal, civil and/or administrative proceedings.	nent control measures have or inaccurate information is a			
Printed Name:				
Title/Position:				
Signature:	Date:			
VIII. Qualified Inspector Certification - Post-construction Stormwater Management Practice(s):				
I hereby certify that all post-construction stormwater management practices have been constructed in conformance with the SWPPP. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.				
Printed Name:				
Title/Position:				
Signature:	Date:			
IX. Owner or Operator Certification				
I hereby certify that this document was prepared by me or under my direct determination, based upon my inquiry of the person(s) who managed the persons directly responsible for gathering the information, is that the infor document is true, accurate and complete. Furthermore, I understand that inaccurate information is a violation of the referenced permit and the laws could subject me to criminal, civil and/or administrative proceedings.	construction activity, or those mation provided in this certifying false, incorrect or			
Printed Name:				
Title/Position:				

Signature:

Date:

(NYS DEC Notice of Termination - January 2015)

Appendix B – General Permit GP-0-20-001

Appendix C – Construction Personnel Contact List

- Construction Contact List -

- Contractor Certification Form -

Appendix C – Construction Contact List

SWPPP Construction Contact List

Name	Title/Role	Company	Phone Number
	Project Engineer		
	Project Field Construction Coordinator		
	Project Environmental Engineer		
	Division Environmental Engineer (Spill Reporting)		
	SWPPP Preparer		
	Qualified Inspector		

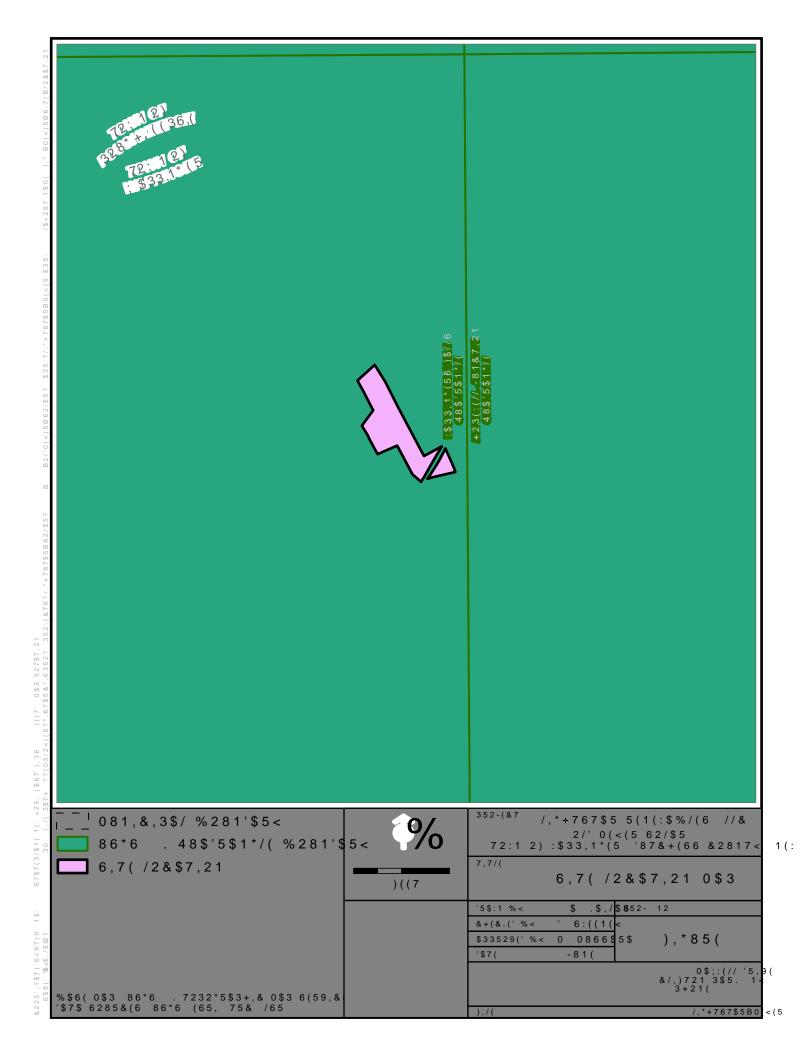
Appendix C – Contractor Certification Form

Appendix D – Agency Correspondence and Notifications

Appendix E – Environmental Background Information

- Figure 1: Site Location Map -

-Environmental and Cultural Resource Information -


-State Historic Preservation Office (SHPO) Cultural Resource Information System (CRIS)

Maps

- USDA NRCS Soil Resource Report -

- Northeast Regional Climate Center's Extreme Precipitation Tables -

Appendix E – Figure 1: Site Location Map

Appendix E – Environmental and Cultural Resource Information

Appendix E – State Historic Preservation Office (SHPO) Cultural Resource Information Systems (CRIS)

Parks, Recreation, and Historic Preservation

KATHY HOCHUL Governor ERIK KULLESEID Commissioner

January 25, 2022

Chris Vorlicek Development Manager Lightstar Renewables, LLC 501 Boylston Street Boston, MA 02116

Re: DEC

55 Plains Road Community Solar Project/4 MW/16 of 30.28 Acres 55 Plains Rd, Walden, NY 12586 22PR00356

Dear Chris Vorlicek:

Thank you for requesting the comments of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the project in accordance with the New York State Historic Preservation Act of 1980 (Section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the OPRHP and relate only to Historic/Cultural resources. They do not include potential environmental impacts to New York State Parkland that may be involved in or near your project. Such impacts must be considered as part of the environmental review of the project pursuant to the State Environmental Quality Review Act (New York Environmental Conservation Law Article 8) and its implementing regulations (6 NYCRR Part 617).

Based upon this review, it is the opinion of OPRHP that no properties, including archaeological and/or historic resources, listed in or eligible for the New York State and National Registers of Historic Places will be impacted by this project.

If further correspondence is required regarding this project, please be sure to refer to the OPRHP Project Review (PR) number noted above.

Sincerely,

Daniel he

R. Daniel Mackay

Deputy Commissioner for Historic Preservation Division for Historic Preservation Appendix E – USDA NRCS Soil Resource Report

USDA United States Department of Agriculture

Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Dutchess County, New York

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	
Map Unit Descriptions	11
Dutchess County, New York	13
Ca—Canandaigua silt loam, neutral substratum	13
DwB—Dutchess-Cardigan complex, undulating, rocky	14
DwC—Dutchess-Cardigan complex, rolling, rocky	16
Ur—Urban land	
Wy—Wayland silt loam	19
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

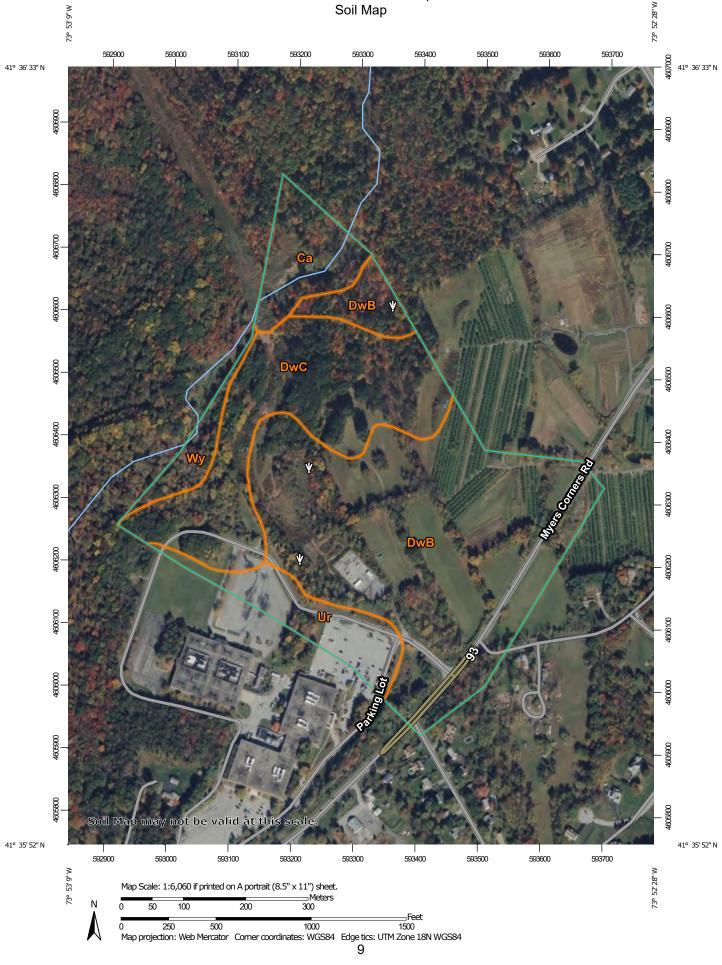
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP L	EGEND)	MAP INFORMATION
	terest (AOI) Area of Interest (AOI)	₩ ¢	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons	20 *	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines Soil Map Unit Points	V A	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
—	Point Features Blowout	⊶ ≁ Water Fea	Special Line Features atures	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
×	Borrow Pit	~~ Transport	Streams and Canals tation	Please rely on the bar scale on each map sheet for map
× ≎	Clay Spot Closed Depression	~~	Rails Interstate Highways	measurements.
×	Gravel Pit Gravelly Spot	~	US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
87	Landfill Lava Flow	~~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
۸ ىك %	Marsh or swamp	Backgrou	Ind Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
Ø	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
© V	Rock Outcrop			Soil Survey Area: Dutchess County, New York Survey Area Data: Version 19, Sep 10, 2022
-₩- ;\;;	Saline Spot Sandy Spot			Soil map units are labeled (as space allows) for map scales
	Severely Eroded Spot Sinkhole			1:50,000 or larger. Date(s) aerial images were photographed: Oct 8, 2020—Oct 14,
4 8	Slide or Slip Sodic Spot			2020
ىكۆ	·			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Са	Canandaigua silt loam, neutral substratum	5.9	7.5%
DwB	Dutchess-Cardigan complex, undulating, rocky	43.3	55.3%
DwC	Dutchess-Cardigan complex, rolling, rocky	20.6	26.3%
Ur	Urban land	6.2	7.9%
Wy	Wayland silt loam	2.4	3.1%
Totals for Area of Interest		78.4	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Dutchess County, New York

Ca—Canandaigua silt loam, neutral substratum

Map Unit Setting

National map unit symbol: 9rds Elevation: 100 to 1,200 feet Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 115 to 195 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Canandaigua and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canandaigua

Setting

Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Parent material: Silty and clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 6 inches: silt loam *H2 - 6 to 40 inches:* silt loam *H3 - 40 to 72 inches:* silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 1 percent
Available water supply, 0 to 60 inches: High (about 12.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: C/D Ecological site: F101XY010NY - Wet Lake Plain Depression Hydric soil rating: Yes

Minor Components

Raynham

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Sun

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Livingston

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Kingsbury

Percent of map unit: 3 percent Hydric soil rating: No

Punsit

Percent of map unit: 2 percent Hydric soil rating: No

DwB—Dutchess-Cardigan complex, undulating, rocky

Map Unit Setting

National map unit symbol: 9rfn Elevation: 0 to 1,330 feet Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 115 to 195 days Farmland classification: All areas are prime farmland

Map Unit Composition

Dutchess and similar soils: 40 percent Cardigan and similar soils: 30 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dutchess

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy till derived mainly from phyllite, slate, schist, and shale

Typical profile

H1 - 0 to 8 inches: silt loam

- H2 8 to 28 inches: silt loam
- H3 28 to 86 inches: channery silt loam

Properties and qualities

Slope: 1 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Description of Cardigan

Setting

Landform: Ridges, hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

Typical profile

H1 - 0 to 8 inches: channery silt loam
H2 - 8 to 20 inches: channery loam
H3 - 20 to 30 inches: channery silt loam
H4 - 30 to 34 inches: unweathered bedrock

Properties and qualities

Slope: 1 to 6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Georgia

Percent of map unit: 10 percent

Hydric soil rating: No

Nassau

Percent of map unit: 9 percent Hydric soil rating: No

Massena

Percent of map unit: 9 percent Hydric soil rating: No

Rock outcrop

Percent of map unit: 1 percent Hydric soil rating: Unranked

Sun

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

DwC—Dutchess-Cardigan complex, rolling, rocky

Map Unit Setting

National map unit symbol: 9rfp Elevation: 0 to 1,330 feet Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 115 to 195 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Dutchess and similar soils: 40 percent Cardigan and similar soils: 30 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dutchess

Setting

Landform: Ridges, hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy till derived mainly from phyllite, slate, schist, and shale

Typical profile

H1 - 0 to 8 inches: silt loam H2 - 8 to 28 inches: silt loam H3 - 28 to 86 inches: channery silt loam

Properties and qualities

Slope: 5 to 16 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Description of Cardigan

Setting

Landform: Ridges, hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

Typical profile

H1 - 0 to 8 inches: channery silt loam
H2 - 8 to 20 inches: channery loam
H3 - 20 to 30 inches: channery silt loam

H4 - 30 to 34 inches: unweathered bedrock

Properties and qualities

Slope: 5 to 16 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Georgia

Percent of map unit: 10 percent

Hydric soil rating: No

Massena

Percent of map unit: 9 percent Hydric soil rating: No

Nassau

Percent of map unit: 9 percent Hydric soil rating: No

Rock outcrop

Percent of map unit: 1 percent Hydric soil rating: Unranked

Sun

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Ur—Urban land

Map Unit Setting

National map unit symbol: 9rjb Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 115 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Urban Land

Typical profile *H1 - 0 to 6 inches:* variable

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: Unranked

Minor Components

Udorthents, smoothed

Percent of map unit: 5 percent Hydric soil rating: No

Udorthents, wet substratum Percent of map unit: 3 percent Hydric soil rating: No

Unnamed soils, undisturbed

Percent of map unit: 1 percent Hydric soil rating: Unranked

Rock outcrop

Percent of map unit: 1 percent *Hydric soil rating:* Unranked

Wy—Wayland silt loam

Map Unit Setting

National map unit symbol: 9rjf Elevation: 200 to 1,500 feet Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 115 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Wayland and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Wayland

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Silty and clayey alluvium washed from uplands that contain some calcareous drift

Typical profile

H1 - 0 to 9 inches: silt loam H2 - 9 to 80 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: NoneFrequent
Frequency of ponding: Frequent
Calcium carbonate, maximum content: 1 percent
Available water supply, 0 to 60 inches: High (about 11.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: C/D Ecological site: F144AY016MA - Very Wet Low Floodplain Hydric soil rating: Yes

Minor Components

Linlithgo

Percent of map unit: 5 percent Hydric soil rating: No

Pawling

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: No

Palms

Percent of map unit: 3 percent Landform: Swamps, marshes Hydric soil rating: Yes

Fluvaquents

Percent of map unit: 3 percent Landform: Flood plains Hydric soil rating: Yes

Carlisle

Percent of map unit: 2 percent Landform: Marshes, swamps Hydric soil rating: Yes

Udifluvents

Percent of map unit: 2 percent Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix E – Northeast Regional Climate Center's Extreme Precipitation Tables

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New York
Location	
Longitude	73.878 degrees West
Latitude	41.601 degrees North
Elevation	0 feet
Date/Time	Thu, 05 Jan 2023 10:33:11 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.32	0.49	0.61	0.80	1.00	1.25	1yr	0.87	1.17	1.43	1.75	2.14	2.61	2.94	1yr	2.31	2.83	3.28	3.97	4.57	1yr
2yr	0.38	0.59	0.73	0.97	1.21	1.51	2yr	1.05	1.41	1.73	2.13	2.59	3.15	3.56	2yr	2.79	3.42	3.92	4.63	5.26	2yr
5yr	0.45	0.70	0.88	1.18	1.51	1.90	5yr	1.31	1.74	2.19	2.68	3.26	3.94	4.50	5yr	3.49	4.33	4.98	5.76	6.50	5yr
10yr	0.51	0.80	1.02	1.38	1.79	2.27	10yr	1.55	2.04	2.61	3.20	3.88	4.67	5.39	10yr	4.13	5.18	5.97	6.80	7.64	10yr
25yr	0.60	0.95	1.22	1.68	2.24	2.86	25yr	1.93	2.53	3.31	4.06	4.90	5.84	6.84	25yr	5.16	6.57	7.61	8.48	9.46	25yr
50yr	0.69	1.10	1.41	1.98	2.66	3.42	50yr	2.30	2.97	3.95	4.84	5.82	6.92	8.19	50yr	6.12	7.87	9.14	10.02	11.13	50yr
100yr	0.78	1.27	1.64	2.32	3.16	4.08	100yr	2.73	3.49	4.73	5.79	6.94	8.20	9.81	100yr	7.26	9.43	10.98	11.84	13.09	100yr
200yr	0.90	1.46	1.90	2.72	3.76	4.88	200yr	3.25	4.11	5.66	6.92	8.27	9.72	11.76	200yr	8.61	11.31	13.21	14.00	15.41	200yr
500yr	1.09	1.79	2.34	3.39	4.74	6.18	500yr	4.09	5.10	7.17	8.75	10.42	12.19	14.96	500yr	10.79	14.38	16.87	17.49	19.14	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.51	0.68	0.84	1.05	1yr	0.73	1.02	1.24	1.57	1.96	2.42	2.53	1yr	2.14	2.43	2.61	3.62	3.58	1yr
2yr	0.37	0.57	0.70	0.95	1.18	1.39	2yr	1.01	1.36	1.58	2.01	2.54	3.04	3.46	2yr	2.69	3.33	3.80	4.50	5.12	2yr
5yr	0.42	0.65	0.80	1.10	1.40	1.63	5yr	1.21	1.59	1.84	2.37	2.95	3.67	4.14	5yr	3.25	3.98	4.60	5.29	6.02	5yr
10yr	0.47	0.72	0.89	1.25	1.61	1.82	10yr	1.39	1.78	2.07	2.66	3.29	4.18	4.74	10yr	3.70	4.56	5.30	5.97	6.75	10yr
25yr	0.54	0.83	1.03	1.47	1.93	2.10	25yr	1.67	2.06	2.40	2.97	3.80	4.97	5.65	25yr	4.40	5.43	6.39	6.99	7.86	25yr
50yr	0.61	0.93	1.16	1.66	2.24	2.34	50yr	1.93	2.29	2.71	3.30	4.26	5.65	6.44	50yr	5.00	6.19	7.38	7.86	8.82	50yr
100yr	0.69	1.04	1.31	1.89	2.59	2.63	100yr	2.24	2.57	3.05	3.67	4.78	6.43	7.34	100yr	5.69	7.05	8.51	8.85	9.87	100yr
200yr	0.79	1.18	1.50	2.17	3.03	2.94	200yr	2.61	2.87	3.44	4.09	5.35	7.31	8.34	200yr	6.47	8.02	9.84	9.95	11.03	200yr
500yr	0.94	1.41	1.81	2.63	3.74	3.42	500yr	3.22	3.35	4.05	4.73	6.24	8.65	9.89	500yr	7.66	9.51	11.93	11.58	12.69	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.36	0.55	0.67	0.91	1.11	1.34	1yr	0.96	1.31	1.50	1.93	2.40	2.87	3.19	1yr	2.54	3.07	3.52	4.24	4.90	1yr
2yr	0.40	0.62	0.76	1.03	1.27	1.52	2yr	1.09	1.48	1.72	2.22	2.77	3.27	3.70	2yr	2.90	3.56	4.06	4.80	5.44	2yr
5yr	0.49	0.75	0.93	1.28	1.63	1.93	5yr	1.41	1.89	2.23	2.86	3.62	4.24	4.91	5yr	3.75	4.72	5.40	6.28	7.05	5yr
10yr	0.58	0.89	1.10	1.54	1.99	2.34	10yr	1.72	2.29	2.71	3.50	4.44	5.21	6.09	10yr	4.61	5.85	6.72	7.69	8.60	10yr
25yr	0.73	1.10	1.37	1.96	2.58	3.02	25yr	2.23	2.95	3.54	4.73	5.84	6.88	8.14	25yr	6.09	7.82	8.97	10.07	11.21	25yr
50yr	0.86	1.31	1.63	2.34	3.15	3.68	50yr	2.71	3.59	4.34	5.86	7.17	8.49	10.16	50yr	7.51	9.77	11.20	12.37	13.74	50yr
100yr	1.02	1.54	1.93	2.79	3.83	4.48	100yr	3.31	4.38	5.32	7.27	8.82	10.48	12.70	100yr	9.28	12.21	13.98	15.20	16.82	100yr
200yr	1.21	1.82	2.31	3.34	4.66	5.44	200yr	4.02	5.32	6.52	8.99	10.84	12.96	15.90	200yr	11.47	15.29	17.46	18.74	20.67	200yr
500yr	1.53	2.28	2.93	4.25	6.05	7.05	500yr	5.22	6.89	8.53	11.96	14.25	17.14	21.43	500yr	15.17	20.60	23.47	24.69	27.23	500yr

Appendix F – Construction Drawings

Appendix G – Standards and Specifications for Erosion and Sediment Controls

Appendix H – Spill Cleanup and Reporting Guidance

-NYSDEC Technical Field Guidance: Spill Reporting and Initial Notification Requirements -- NYSDEC CP-51: Soil Cleanup Guidance - Appendix H – NYSDEC Technical Field Guidance: Spill Reporting and Initial Notification Requirements

TECHNICAL

FIELD GUIDANCE

SPILL REPORTING AND INITIAL NOTIFICATION REQUIREMENTS

NOTES

Spill Reporting and Initial Notification Requirements

GUIDANCE SUMMARY AT-A-GLANCE

- Reporting spills is a crucial first step in the response process.
- You should understand the spill reporting requirements to be able to inform the spillers of their responsibilities.
- Several different state, local, and federal laws and regulations require spillers to report petroleum and hazardous materials spills.
- The state and federal reporting requirements are summarized in Exhibit 1.1-1.
- Petroleum spills must be reported to DEC unless they meet <u>all</u> of the following criteria:
 - The spill is known to be less than 5 gallons; and
 - The spill is contained and under the control of the spiller; and
 - The spill has not and will not reach the State's water or any land; and
 - The spill is cleaned up within 2 hours of discovery.

All reportable petroleum spills and most hazardous materials spills must be reported to DEC hotline (1-800-457-7362) within New York State; and (1-518 457-7362) from <u>outside</u> New York State. For spills not deemed reportable, it is strongly recommended that the facts concerning the incident be documented by the spiller and a record maintained for one year.

- Inform the spiller to report the spill to other federal or local authorities, if required.
- Report yourself those spills for which you are unable to locate the responsible spiller.
- Make note of other agencies' emergency response telephone numbers in case you require their on-scene assistance, or if the response is their responsibility and not BSPR's.

1.1.1 Notification Requirements for Oil Spills and Hazardous Material Spills

Spillers are required under state law and under certain local and federal laws to report spills. These various requirements, summarized in Exhibit 1.1-1, often overlap; that is, a particular spill might be required to be reported under several laws or regulations and to several authorities. Under state law, all petroleum and most hazardous material spills must be reported to DEC Hotline (1-800-457-7362), within New York State, and to 1-518-457-7362 from outside New York State. Prompt reporting by spillers allows for a quick response, which may reduce the likelihood of any adverse impact to human health and the environment. Yo will often have to inform spillers of there responsibilities.

Although the spiller is responsible for reporting spills, other persons with knowledge of a spill, leak, or discharge is required to report the incident (see Appendices A and B). You will often have to inform spillers of their responsibilities. You may also have to report spills yourself in situations where the spiller is not known or cannot be located. However, it is the legal responsibility of the spiller to report spills to both state and other authorities.

BSPR personnel also are responsible for notifying other response agencies when the expertise or assistance of other agencies is needed. For example, the local fire department should be notified of spills that pose a potential explosion and/or fire hazard. If such a hazard is detected and the fire department has not been notified, call for their assistance immediately. Fire departments are trained and equipped to respond to these situations; you should not proceed with your response until the fire/safety hazard is eliminated. For more information on interagency coordination in emergency situations see Part 1, Section 3, Emergency Response.

Another important responsibility is notifying health department officials when a drinking water supply is found to be contaminated as a result of a spill. It will be the health department's responsibility to advise you on the health risk associated with any contamination.

Exhibits 1.1-1 and 1.1-2 list the state and federal requirements to report petroleum and hazardous substance spills, respectively. The charts describe the type of material covered, the applicable act or regulation, the agency that must be notified, what must be reported, and the person responsible for reporting. New York state also has a emergency notification network for spill situations (e.g., major chemical releases) that escalate beyond the capabilities of local and regional response agencies/authorities to provide adequate response. The New York State Emergency Management Office (SEMO) coordinates emergency response activities among local, state, and federal government organizations in these cases.

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report
Petroleum from any source	Navigation Law Article 12; 17 NYCRR 32.3 and 32.4	DEC Hotline 1-800-457-7362	 The notification of a discharge must be immediate, but in no case later than two hours after discharge. 1. Name of person making report and his relationship to any person which might be responsible for causing the discharge. 2. Time and date of discharge. 3. Probable source of discharge. 4. The location of the discharge, both geographic and with respect to bodies of water. 5. Type of petroleum discharges. 6. Possible health or fire hazards resulting from the discharge. 7. Amount of petroleum discharged. 8. All actions that are being taken to clean up and remove the discharge. 9. The personnel presently on the scene. 10. Other government agencies that have been or will be notified. 	Any person causing discharge of petroleum. Owner or person in actual or constructive control must notify DEC unless that person has adequate assurance that such notice has already been given.
All aboveground petroleum and underground storage facilities with a combined storage capacity of over 1100 gallons.	ECL §17-1007; 6 NYCRR §613.8	DEC Hotline 1-800-457-7362	 Report spill incident within two hours of discovery. Also when results of any inventory, record, test, or inspection shows a facility is leaking, that fact must be reported within two hours of discovery. 	Any person with knowledge of a spill, leak, or discharge.
Petroleum contaminated with PCB.	Chemical Bulk Storage Act 6 NYCRR Parts 595, 596, 597	DEC Hotline 1-800- 457-7362	Releases of a reportable quantity of PCB oil.	Owner or person in actual or constructive possession or control of the substance, or a person in contractual relationship, who inspects, tests, or repairs for owner.

State and Federal Reporting Requirements for Petroleum Spills, Leaks, and Discharges

State and Federal Reporting Requirements for Petroleum Spills, Leaks, and Discharges (continued)

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report
Any liquid (petroleum included) that if released would be likely to pollute lands or waters of the state.	ECL §17-1743	DEC Hotline 1-800-457-7362	Immediate notification that a spill, release, or discharge of any amount has occurred. Owner or person in actual or constructive possession or control of more than 1,100 gallons of the liquid.	
Petroleum Discharge in violation of §311(b)(3) of the Clean Water Act	40 CFR §110.10 (Clean Water Act)	 National Response Center (NRC) 1-800-424-8802. If not possible to notify NRC, notify Coast Guard or predesignated on-scene coordinator. If not possible to notify either 1 or 2, reports may be made immediately to nearest Coast Guard units, provided NRC notified as soon as possible. 	Immediate notification as soon as there is knowledge of an oil discharge that violates water quality standards or causes sheen on navigable waters. Procedures for notice are set forth in 33 CFR Part 153, Subpart B, and in the National Oil and Hazardous Substances Pollution Contingency Plan, 40 CFR Part 300, Subpart E.	Person in charge of vessel or on-shore or off-shore facility.
Petroleum, petroleum by-products or other dangerous liquid commodities that may create a hazardous or toxic condition spilled into navigable waters.	33 CFR 126.29 (Ports and Waters Safety Act)	Captain of the Port or District Commander	As soon as discharge occurs, owner or master of vessel must immediately report that a discharge has occurred.	Owner or master of vessel or owner or operator of the facility at which the discharge occurred.

State and Federal Reporting Requirements for Petroleum Spills, Leaks, and Discharges (continued)

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report
Petroleum or hazardous substance from a vessel, on- shore or off-shore facility in violation of §311(b)(3) of the Clean Water Act.	33 CFR 153.203 (Clean Water Act)	 NRC U.S. Coast Guard, 2100 Second Street, SW, Washington, DC 20593; 1-800- 424-8802. Where direct reporting not practicable, reports may be made to the Coast Guard (District Offices), the 3rd and 9th district of the EPA regional office at 26 Federal Plaza, NY, NY 10278; 1-201- 548-8730. Where none of the above is possible, may contact nearest Coast Guard unit, provided NRC notified as soon as possible. 	Any discharger shall immediately notify the NRC of such discharge.	Person in charge of vessel or facility

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report		
Any hazardous substance pursuant to Article 37. Does not include petroleum.	Chemical Bulk Storage Act 6 NYCRR Parts 595, 596, 597; ECL 40- 0113(d)	DEC Hotline 1-800-457-7362	Releases of a reportable quantity of a hazardous substance.	Owner or person in actual or constructive possession or control of the substance, or a person in contractual relationship, who inspects, tests, or repairs for owner.		
Hazardous materials or substances as defined in 49 CFR §171.8 that are transported. (See federal reporting requirements.)	Transportation Law 14(f); 17 NYCRR 507.4(b)	Local fire department or police department or local municipality	 Immediate notification must be given of incident in which any of the following occurs as a direct result of a spill of hazardous materials: Person is killed. Person receives injuries requiring hospitalization. Estimated damage to carrier or other property exceeds \$50,000. Fire, breakage, spillage, or suspected contamination due to radioactive materials. Fire, breakage, spillage, or suspected contamination involving etiologic agents. Situation is such that, in the judgment of the carrier, a continuing danger to life or property exists at the scene of the incident. 	All persons and carriers engaged in the transportation of hazardous materials.		

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report Each carrier that transports hazardous materials involves in an accident that causes any of the following as a direct result:		
Hazardous materials (wastes included) that are transported, whose carrier is involved in an	Department of Transportation Regulations 49 CFR 171.15; 17 NYCRR Part 924;	 U.S. Department of Transportation 1-800-424-8802 DEC Hotline 1- 	Notice should be given by telephone at the earliest practicable moment and should include: 1. Name of reporter.			
accident.	17 NYCRR Part 507	 2. DEC Notifie 1- 800-457-7362 3. Rail Carrier <u>On-Duty</u> 518- 457-1046 <u>Off-Duty</u> 518- 457-6164 4. Notify local police or fire department. 	 Name and address of carrier represented by reporter. Phone number where reporter can be contacted. Date, time, and location of incident. The extent of injuries, if any. Classification, name and quantity of hazardous materials involved, if available. Type of incident and nature of hazardous material involved and whether a continuing danger to life exists at scene. Each carrier making this report must also make the report required by §171.16. 	 A person is killed A person receives injuries requiring hospitalization Estimated damage to carrier or other property exceeds \$50,000 Fire, breakage, spillage, suspected or otherwise involving radioactive material. Fire, breakage, spillage, suspected contamination involving etiologic agents. Situation is such that carrier thinks it should be reported in accordance with paragraph b. 		

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report
Reportable quantity of a hazardous substance into havigable waters or adjoining shorelines. Substances are listed n 40 CFR 302.4.	Department of Transportation Regulations 49 CFR §171.16 as authorized by the Hazardous Materials Transportation Act	U.S. Coast Guard National Response Center (NRC), 1- 800-424-8802 or 1- 202-267-2675	 As soon as person in charge becomes aware of a spill incident, he must notify NRC and provide the following information: 1. The information required by 49 CFR §171.15 (see above). 2. Name of shipper of hazardous substance. 3. Quantity of hazardous substance discharged, if known. 4. If person in charge is incapacitated, carrier shall make the notification. 5. Estimate of quantity of hazardous substance removed from the scene and the manner of disposition of any unremoved hazardous substance shall be entered in Part (H) of the report required by 49 CFR 171.16 (see above). 	Person in charge of aircraft, vessel, transport vehicle, or facility. Must inform NRC directly, or indirectly through carrier.
Reportable quantity of a hazardous substance from vessel, on-shore or off-shore facility. Substances and requirements specified in 40 CFR §117.3.	40 CFR §117.21 as authorized under the FWPCA	NRC 1-800-424- 8802. If not practicable report may be made to the Coast Guard (3rd or 9th Districts) District Offices or to EPA, designated On-Scene Coordinator, Region II, 26 Federal Plaza, NY, NY 10278; 1- 201-548-8730	Immediate notification is required.	Person in charge of vessel, or on- shore or off-shore facility

(continued)	
-------------	--

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report
hazardous chemical s produced, used, or stored, and there is a reportable quantity of any extremely hazardous substance as set out in Appendix A to 40 CFR 355 or a CERCLA hazardous substance as specified in 40 CFR 302.4. (This section does not apply to a	40 CFR 355.40 (SARA) Releases of CERCLA Hazardous Substances are subject to release reporting requirements of CERCLA §103, codified at 40 CFR Part 302, in addition to being subject to the requirements of this Part.	Community emergency coordinator for the local emergency planning committee of any area likely to be affected and the State Emergency Response Commission of any state likely to be affected by the release. If there is no local emergency planning commission notification shall be made to relevant local emergency response personnel.	 Immediately notify agencies at left and provide the following information when available: 1. Chemical name or identity of any substance involved in the release. 2. Indication of whether the substance is an extremely hazardous substance. 3. An estimate of the quantity released. 4. Time and duration of release. 5. Medium or media into which the release occurred. 6. Known health risks associated with emergency and where appropriate advice regarding medical attention for those exposed. 7. Proper precautions/actions that should be taken, including evacuation. 8. Names and telephone numbers of person to be contacted for further information. As soon as practicable after release, followup notification by providing the following information: 1. Actions taken to respond to and contain the release. 2. Health risks. 3. Advice on medical attention for exposed individuals. 	Owner or operator of facility

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report
Hazardous liquids transported in pipelines, a release of which results in any circumstances as set out in 195.50(a) through (f). Also any incident that results in circumstances listed in 195.52(g).	49 CFR 195.50, 195.52 and 195.54 (Hazardous Liquid Pipeline Safety Act).	NRC, 1-800-424- 8802	 Notice must be given at the earliest practicable moment and the following information provided: Name and address of the operator. Name and telephone number of the reporter. Location of the failure. The time of the failure. The fatalities and personal injuries, if any. All other significant facts known by the operator that are relevant to the cause of the failure or extent of the damages. 	Operator of system.
Hazardous wastes in transport	40 CFR §263.30(a) (RCRA)	 Local authorities If required by 49 CFR 171.15, notify the NRC at 1-800-424- 8802 or 1-202- 426-2675 Report in writing to Director of Hazardous Materials Regulations, Materials Transportation Bureau, Department of Transportation, Washington, DC 20590 	 Notification must be immediate. For discharge of hazardous waste by air, rail, highway, or water, the transporter must: 1. Give notice as in 49 CFR 161.15 (if applicable). 2. Report in writing as in 49 CFR 171.16. Wastes transporter (bulk shipment) must give same notice as required by 33 CFR 153.20. 	Transporter by air, rail, highway, or water.

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and Wher	Who Must Report
Vinyl Chloride from any manual vent valve, or polyvinyl chloride plants	Clean Air Act 40 CFR 61.64	Administrator of EPA	Within 10 days of any discharge from any manual vent valve, report must be made, in writing, and the following information provided:	Owner or operator of plant.
			 Source, nature and cause of the discharge Date and time of the discharge Approximate total vinyl chloride loss during discharge Method used for determining loss Action taken to prevent the discharge Measures adopted to prevent future discharges. 	
Radioactive Materials	6 NYCRR §380.7	Commissioner of DEC	 Notify immediately by telephone when concentration, averaged over a 24-hour period, exceeds or threatens to exceed 5000 times the limits set forth in Schedule 2 of 380.9 (in uncontrolled areas). Notify within 24 hours by telephone when concentration, averaged over 24- hour period, exceeds or threatens to exceed 500 times the limits set forth in Schedule 2 above (in uncontrolled areas). Report within 30 days the concentration and quantity of radioactive material involved, the cause of the discharge, and corrective steps taken or planned to ensure no recurrence of the discharge. 	

Materials Covered	Act or Regulation	Agency to Notify	What Must Be Reported and When	Who Must Report
Low Level radioactive wastes in transport. Any suspected or actual uncontrolled releases.	6 NYCRR 381.16 ECL §27-0305 Waste Transporter Permits	DEC and Department of Health	Immediate notification.	Transporter

TECHNICAL

FIELD GUIDANCE

SPILL REPORTING AND INITIAL NOTIFICATION ENFORCEMENT OF SPILLER RESPONSIBILITY

<u>NOTES</u>

Spill Reporting and Initial Notification -Enforcement of Spiller Responsibility

GUIDANCE SUMMARY-AT-A-GLANCE

- # Use the "Notification Procedures Checklist" (Exhibit 1.1-3) to document conversations with the responsible party or potentially responsible party (PRP/RP) concerning his or her clean-up responsibilities.
- # The steps to follow when you inform the PRP/RP of his or her legal responsibility are:
 - -- Give your name and identify yourself as a DEC employee;
 - -- Inform them that they have been identified as the party responsible for the spill;
 - -- Inform PRP/Rps of their liability for all clean-up and removal costs. (If necessary, cite Section 181 of the Navigation Law);
 - -- Ask PRP/Rps "point blank" if they will accept responsibility for the cleanup; and
 - -- If the PRP/RP does not accept responsibility, or does not admit to being the PRP/RP, inform him or her that DEC will conduct the cleanup and send the bill to whoever is the PRP/RP. Also inform them that a DEC-conducted cleanup could be more costly than a PRP/RP-conducted cleanup, and that the PRP/RP could face interest charges and penalties for refusing to clean up the spill.
- # If the PRP/RP accepts responsibility for the cleanup:
 - (1) Send the PRP/RP a "Spiller Responsibility Letter" (Exhibit 1.1-5) and an "Acceptance of Financial Responsibility Form" (Exhibit 1.1-6) and
 - (2) Send the PRP/RP an "Option Letter," which should outline the options available to the PRP/RP to clean up the spill. See Exhibit 1.1-4 for a summary of how and when to use these forms and what they may include.

<u>NOTES</u>

1.1.2 Spill Reporting and Initial Notification - Enforcement of Spiller Responsibility

This section provides guidance on those steps you take to inform responsible parties or potentially responsible parties (PRP/Rps) or spillers of their responsibility under state law for cleaning up spills. This guidance applies to all contacts (by phone, by mail, or in person) you have with Rps throughout the response process concerning their fulfillment of this legal responsibility. The possible consequences of an RP's refusal or inability to conduct the spill response are also discussed.

1. State Law and Policy

Under Article 12 of the Navigation Law and Article 71 of the Environmental Conservation law (ECL), those parties responsible for a petroleum release are liable for all costs associated with cleaning up the spill as well as third party damages (see Introduction-A for more information). Section 181 of the Navigation Law states:

Any person who has discharged petroleum shall be strictly liable, without regard to fault, for all cleanup and removal costs and all direct damages, no matter by whom sustained as defined in this section.

There are two ways by which PRP/RPs can pay for the costs associated with cleanups. First, the PRP/RP can reimburse the state for site investigation, clean-up, and remediation costs incurred by the State Oil Spill Fund or federal Leaking Underground Storage Tank (LUST) Trust Fund. Second, the PRP/RP can assume full responsibility for the cleanup from the beginning and bear all costs throughout the clean-up process. It is DEC's policy to make every effort to have PRP/RPs pay for cleanups from the outset.¹

To achieve PRP/RP-directed and PRP/RP-financed cleanups, your responsibilities are to: (1) identify the PRP/RP(s), (2) inform them of their legal responsibilities for the spill, and (3) ensure that they carry out these responsibilities. All investigations of spills and PRP/RPs should be pursued vigorously and without prejudice. Use to your advantage the argument that having the PRP/RP assume responsibility for clean-up costs benefits both DEC and the spiller. It saves DEC the expense of cost-recovery procedures. It also allows the PRP/RP to be more involved in clean-up decisions (e.g., choosing their clean-up contractors) and, more significantly, it usually results in lower clean-up costs. Because the PRP/RP is responsible for all indirect costs incurred if DEC conducts the cleanup, the spiller will pay for the DEC contractor's clean-up work, as well as the supervision costs incurred by DEC, any third-party claims associated with the spill, and any punitive fines levied.

¹ Spillers are not only responsible for assuming the costs of a cleanup, but also can be subject to a \$25,000 per day fine for not paying the clean-up costs (among other violations). The Navigation Law provides for these penalties in Section 192, which states:

Any person who knowingly gives or causes to be given any false information as a part of, or in response to, any claim made pursuant to this article for cleanup and removal costs, direct or indirect damages resulting from a discharge, or who otherwise violates any of the provisions of this article or any rule promulgated thereunder or who fails to comply with any duty created by this article shall be liable to a penalty of not more than twenty-five thousand dollars for each offense in court of competent jurisdiction. If the violation is of a continuing nature each day during which it continues shall constitute an additional, separate, and distinct offense. (emphasis added)

2. Notification Process

Part 1, Section 4, of this manual discusses the process of identifying the PRP/RP as part of the spill investigation for a particular site. Once you identify the PRP/RP, follow the guidance provided below for informing the PRP/RP of his or her responsibilities for spill cleanup. If you are uncertain about who the PRP/RP is, apply the procedures outlined below with all suspected RPs until the responsible party or parties are identified.

a. Informing RPs of Their Responsibility at the Spill Scene

It is important to inform PRP/RPs of their legal responsibility to clean up a spill as soon as possible. When you arrive at a spill site, you should immediately inform the representative of any PRP/RP of their liability under the Navigation Law and the Environmental Conservation Law. In doing so, follow the steps covered in the "Notification Procedures Checklist" (Exhibit 1.1-3).

Document completion of the notification steps, and identify your contact(s).

Although you should be firm and direct in informing the PRP/RP of their responsibility, you should make every attempt to avoid an adversarial relationship with the RP. The full cooperation of the PRP/RP will result in a more efficient and effective cleanup.

b. Informing Spillers of Their Responsibility in Writing

You should send three different letters to the PRP/RP to inform them of their responsibility (see Exhibit 1.1-4, "Notification Forms Summary"). If a site response was initiated and you are able to confirm the spill visually, the "Spiller Responsibility Letter" (Exhibit 1.1-5) along with an "Acceptance of Financial Responsibility Form" (Exhibit 1.1-6) should be sent as soon as possible. In addition, an "Option Letter" that informs the PRP/RP of their possible options for addressing a spill should be sent. These letters should be kept as part of the Corrective Action Plan (CAP) (see Part 1, Section 5, "Corrective Action Plans.")

Exhibit 1.1-3 Notification Procedures Checklist

Completed		Step	Date	Contact(s)
	1.	Give your name and identify yourself as a DEC employee.		
	2.	Inform the PRP/RP that he/she has been identified as the party responsible for the spill.		
	3.	Inform PRP/RPs of their responsibility to pay for all clean-up costs. (As necessary, cite Section 181 of the Navigation Law or Article 71 of the ECL.)		
	4.	Ask PRP/RPs "point blank" if they will accept responsibility for the cleanup.		
	Resp	oonse:		
	5.	If the PRP/RP does not accept responsibility, or does not admit to being the spiller, inform him/her that DEC will conduct the cleanup and send the bill to whoever is the spiller.		
	6.	If the PRP/RP does not accept responsibility also inform him or her that a DEC- conducted cleanup could be more costly than a spiller- conducted cleanup, and that the spiller could face interest charges and a fine for refusing to pay for the billed clean-up costs.		

Exhibit 1-A-4

Notification Forms Summary (Send Forms by Certified Mail)

Notification Form	When and How to Use	Information to be Included
Spiller Responsibility Letter	Send by certified mail to PRP/RP for confirmed spill.	# Spill location;
		 # Spiller's responsibility under the Navigation Law;
		# Penalties that can be levied if the spiller does not cooperate; and
		# Deadline for spiller to begin containment and removal of the spill.
Acceptance of Spiller Responsibility Form	Send by certified mail to PRP/RP for confirmed spill.	# Request for spiller's signature acknowledging his or her acceptance of responsibility for the spill cleanup.
Option Letter	Send by certified mail to PRP/RP for	# Spill number;
	confirmed or suspected release (e.g., failed tightness test).	# Date spill was discovered or reported;
		# Exact location of the spill;
		 # Authority of Article 12 of the Navigation Act; and
		# Penalties for noncompliance.

Spiller Responsibility Letter

[Date]

[Addressee] [Address]

Dear []:

This is to inform you that as a result of investigation by our Department, we consider you responsible for Petroleum Spill Number ______, dated ______, at _____. Under Article 12 of the Navigation Law, Section 192, any person who discharges petroleum without a permit and fails to promptly clean up such prohibited discharge may be subject to a penalty of up to \$25,000 a day.

Containment and removal of this spill must be initiated within _____ hours.

Your failure to initiate timely spill cleanup and removal, in addition to the penalty stated above, will result in your being billed for all actual costs incurred by New York State as set forth in Section 181 of the Navigation Law. These costs include cleanup and removal, all direct and indirect damages, including damages incurred by third parties.

Sincerely,

Regional Spill Engineer Region [Date]

SPILL #_____

ACCEPTANCE OF FINANCIAL RESPONSIBILITY

_____, hereby assumes responsibility for containment and (Name of Company and Person)

cleanup of _____ discharged from_____ (Substance) (Source)

on _____, and recognizes that the determination of the adequacy and propriety of (Date)

the containment and cleanup operation continues to rest with the New York State

Department of Environmental Conservation On-Scene Coordinator.

(Authorized Signature and Title)

(Name and Title Printed)

(Address of Company)

(Date and Time)

(Witness)

NOTES

The "Spiller Responsibility Letter" informs spillers of their responsibility under the Navigation Law and explains the penalties that can be levied if the spiller does not cooperate. It should be sent to the spiller or suspected spiller as soon as a petroleum spill has been confirmed. The letter notifies the spiller that he or she is required to initiate containment and removal of the spill within a period of time you specify.

There are at least three factors you should consider when specifying a deadline in this letter:

- # The size and nature of the spill;
- # The proximity of the spill to, or its possible effects on, water supplies (surface or ground water), nearby homes and other structures, and/or sensitive environmental areas; and The possible environmental, safety, and/or human health effects of delaying containment and removal.

The "Acceptance of Spiller Responsibility Form" requires the spiller's signature acknowledging his or her responsibility for containment and cleanup of the spill. This form and the "Spiller Responsibility Letter" should be sent by certified mail.

The "Option Letter" outlines the possible options available to the PRP/RP for cleanup of the spill. The contents of this letter can vary somewhat depending on how the release was discovered (e.g., through a complaint or a failed tightness test), the extent and type of spill, and the policies and procedures of your regional office. There is, however, some information that should appear in every "Option Letter." All "Option Letters" should contain the following: spill number, date the spill was discovered, and exact location of the spill. In addition, the letter should cite the response authority provided DEC by Article 12 of the Navigation Act and describe the penalties for noncompliance.

Each "Option Letter" should outline clearly the options open to the PRP/RP to address the spill and the information you wish submitted, and may also specify certain deadlines for taking action. However, it is up to you to determine the particular options, information requirements, and dates you include in the letter. Depending on the circumstances, you may list in your letter one or several options from which the PRP/RP can choose. For example, when an UST fails an initial tank test the following options could be included:

- # Conduct separate integrity tests on the piping and the tanks in order to verify the release source within the tank system.
- # Remove the "non-tight" tank and either remove and dispose of all contaminated soils, or install monitoring wells.

NOTES

- # Install monitoring wells and abandon the "non-tight" tank in-place.
 - # Remove the tank within 30 days, according to the requirements for tank removal (outline these requirements in the letter).

The "Option Letter" should always be sent by certified mail. In addition, you should have the PRP/RP inform you as soon as possible about the option(s) he or she has chosen.

Several examples of possible "Option Letters" are included as Exhibits 1.1-7 through 1.1-12. These are provided as examples only; you should use "Option Letters" developed by your own office, or develop your own.

Exhibit 1.1-7 is a sample option letter to an PRP/RP for removal of contaminated soil from an UST release. Note that this option letter includes: (a) specific requirements for removal of the contaminated soil; (b) dates for when the removal must be completed, and (c) requirements for the PRP/RP to forward to DEC copies of the landfill disposal receipt and ample test results. The additional sample option letters apply to the following situations: when an UST has failed an initial tightness test (Exhibit 1.1-8), when an UST fails an isolation tank test (Exhibit 1.1-9), when an UST fails a Petro-tite Systems Test (Exhibit 1.1-10), and ground-water contamination cleanup (Exhibit 1.1-11).

3. Dealing with Uncooperative Spillers

There are generally two ways in which an PRP/RP may fail to fulfill his or her legal responsibilities for spill cleanup: (1) a PRP/RP may refuse from the beginning to accept responsibility, or (2) an PRP/RP may fail to conduct a cleanup in the manner, or in as timely a fashion, as agreed upon with the DEC. If a PRP/RP refuses to cooperate from the outset, try again to change the RP's mind. Send additional notices of spiller responsibility (Exhibit 1.1-12) and/or initiate phone conversations with PRP/RPs to inform them again of the consequences of not cooperating (i.e., higher clean-up costs and possible penalties). If a party claims not to be the PRP/RP, you should inform them of your reasons for believing they are the PRP/RP under the Navigation Law.

If a PRP/RP agrees to conduct and pay for the cleanup and then does not proceed in the manner agreed upon or as quickly as agreed upon, you should inform the PRP/RP immediately that you are dissatisfied with the progress of the cleanup and that DEC is considering taking it over. There are no hard-and-fast rules for deciding when you should take over a cleanup. If possible, you should always work toward having the PRP/RP continue the cleanup in the agreed-upon manner. Attempt to determine why the cleanup is not proceeding as planned and consider means of helping the PRP/RP-directed cleanup get back on track.

Sample Option Letter: Soil Cleanup Spill

[Date]

[Addressee] [Address]

Dear [

1:

This letter is to confirm your - (site meeting) (telephone conversation) with

_____ of this Department on

(Name) (day) (date) (year)

in regards to the above-mentioned spill site. This site involves _____

The following items were discussed and agreed upon:

- 1. All contaminated material must be removed and stored on site until it can be properly disposed of at a properly permitted landfill.
- 2. All contaminated material must be sampled for _____

(analyses)

_____. The results must be

(explanation)

negative for the material to be considered non-hazardous oily debris. You must contact your selected sanitary landfill to verify the sample analyses that they require for disposal.

- 3. A hauler with a Part 364 permit must be used to haul the contaminated soil to your selected landfill.
- 4. Please notify this Department after the work is completed but prior to any backfilling of the spill area so that an inspection of the excavation may be made.
- 5. Please forward to us a copy of the landfill disposal receipt and the sample results.

A schedule for this work is required by				
	(day) (date)	(year)		
Cleanup must be performed by no later than			<u>_</u> .	
	(day) (date)	(year)		
If you have any questions, please feel free to c	ontact			
			(Name)	
at 847-4590. Your cooperation will be apprecia	nted.			

Very truly yours,

Senior Sanitary Engineer

Sample Option Letter: Initial Tank Failure

Initial Tank Failure						
		[Date]				
[Addressee] [Address]						
Dear []:						
This Depart	ment r	eceived notification onthat (a)				
		(day) (date) (year)				
	1 4 - 4	tank(s) failed its (their) tank test performed by				
(gallons) (proc		ored) On, Mrof this Department				
(contractor)						
discussed with		that one of the following options must be done concerning this tank.				
	(p	erson)				
OPTION 1:	1.	The tank is to be immediately isolated from the piping and is to be retested. If the tank tests tight, it may remain in service.				
	2.	The lines are to be repaired, if necessary, and retested by a state-approved method. Exposed piping may be air tested.				
	3.	A copy of any test results are to be sent to this office.				
OPTION 2:	If the	e tank fails the retest, or if you decide not to retest, the following must now be done:				
	1.	All product must be immediately removed from the tank.				
	2.	The tank itself must be removed within thirty days. A Petroleum Bulk Storage form must l submitted to this Department prior to tank removal.				
	3.	The interior surface of the tank must be cleaned, and all sludge and residue generated by this process must be properly disposed. The tank must be cut open to allow for this work and to ensure proper ventilation of the tank interior.				
	4.	All safety precautions regarding the opening, cleaning and entering of the tank must be followed. The interior atmosphere of the tank may be explosive and proper procedures must be followed.				
	5.	Once the tank has been cleaned out, it may be disposed as scrap.				
this tank is ren	noved	be notified when you have a firm date for retesting or removal. Please note, we must be present when to determine if any groundwater or soil contamination exists. If groundwater or soil contamination is ial work will be required.				
If you have	any qu	uestions, please contact at 847-4590. Your cooperation will be appreciated.				

Sincerely,

[]

[Date]

[Addressee] [Address]

Dear []:

On_____, a __gallon____, underground store storage tank at the (day) (date) (year) (#) (material) above-mentioned address failed a system tank test. On_____, this tank failed an isolation tank test. (day) (date) (year)

Since the tank failed the retest, the following must now be done:

- 1. All product must be immediately removed from the tank.
- 2. The tank itself must be removed within thirty days. A Petroleum Bulk Storage form (enclosed) must be submitted to this Department prior to tank removal.
- 3. The interior surface of the tank must be cleaned, and all sludge and residue generated by this process must be properly disposed. The tank must be cut open to allow for this work and to ensure proper ventilation of the tank interior.
- 4. All safety precautions regarding the opening, cleaning and entering of the tank must be followed. The interior atmosphere of the tank may be explosive and proper procedures must be followed.
- 5. Once the tank has been cleaned out, it may be disposed as scrap.

_of this Department must be notified when you have a firm

(Name)

date for removal. We must be present when this tank is removed to determine if any groundwater or soil contamination exists. If groundwater or soil contamination is found, further remedial work will be required.

For your use, enclosed is a list of contractors that are known by this Department to do this type of work. This list is by no means complete. Any contractor may be used by you for this work.

If you have any questions, please feel free to call ______at 847-4590.

[

(Name)

Your cooperation will be appreciated.

Sincerely,

]

Sample Option Letter: Failed Tank Test

[Date]

CERTIFIED - RETURN RECEIPT REQUESTED

[Addressee] [Address]

RE: Spill No.

Gentlemen:

This office has been informed by (Name) that (tank) failed a Petrotite systems test. In accordance with Article 12 of the New York State Navigation Law, I must determine if there has been any harm to the lands or the groundwater of the State. In order for me to make this determination, you have three options:

- 1. Prove that it was not a leaking tank by removing all the piping from the tank and separately Petrotite test the tank. If the tank passes the Petrotite test, it is a piping leak. The tank may then be abandoned or the piping can be repaired, attached to the tank, and the system Petrotite tested.
- 2. Excavate and remove the tank in the presence of a representative from this office so that an inspection of the tank and the soil can be made. If the tank is sound, and there is no evidence of product loss, nothing further need be done. If there is a problem, proceed as in 3 below.
- 3. Abandon the tank in-place and install several four (4) inch diameter PVC site wells extending five (5) feet into the groundwater with a screen length of ten (10) feet, with slot size of .020 inches. The exact location and number of wells will be determined by a representative from this office. These wells will be checked for a period of twelve months by New York State, and if there is no evidence of product for that period, the spill will be removed from our listing. If free or dissolved product appears, cleanup must begin immediately.

If cleanup does not begin by (Date) by the responsible party, the State will begin the cleanup and bill the responsible party.

Sincerely,

[]

Sample Option Letter: Ground-water Cleanup

[Date]

[Addressee] [Address]

Dear []:

This letter is to confirm your <u>(site meeting)</u> (telephone conversation) with <u>(Name)</u> of this Department on <u>(day)</u> (<u>date)</u> (<u>year</u>). Groundwater at this spill site is contaminated with <u>(free floating oil)</u> (<u>dissolved oil components</u>). The following items were discussed and agreed upon:

- 1. <u>(#)</u> additional four-inch monitoring wells will be installed at the agreed upon locations. A sketch of a typical monitoring well is enclosed for your use.
- 2. One recovery well will be installed to recover oil product. Groundwater must be pumped to depress the groundwater table. The groundwater must be pumped to an oil-water separator tank. Accumulated oil may be recovered from the well by bailing or by a second pump. A second type of recovery well pumps both oil and water to a separator tank. Oil from the tank is then recovered. You should check with your contractor to determine the best method for the recovery well. Groundwater must be pumped to depress the groundwater table.
- 3. The discharge water must be sampled for (<u>Contaminates</u>). Dependent upon the sampling results, it may be discharged with a SPDES permit to <u>(Name)</u>. The water must at all times be sheenless. An air stripper or a carbon filter may be necessary for the discharge water.
- 4. All collected oil must be properly disposed. Copies of receipts indicating the disposal site must be forwarded to this office.

It was also agreed that these actions be completed by <u>(Date)</u>. Should you have any questions, please do not hesitate to contact <u>(Name)</u> at 847-4590. Your cooperation will be appreciated.

Sincerely,

[]

Sample Option Letter: Soil Disposal, Soil Still On Site

[Date]

[Addressee] [Address]

Dear []:

A recent inspection by <u>(Name)</u> of this office indicated that the contaminated soil at your facility still remains on site. We are requesting this oil be removed by <u>(day) (date) (year)</u> to an acceptable landfill. Please send a copy of the disposal receipt to this office.

If you cannot remove the soil by that date, please contact this office immediately. If you do not contact this office and the soil still remains on site past (Date), DEC will have the soil removed from your site. You will then be billed for the costs of removal and disposal as well any relevant penalties.

If you have any questions, please feel free to contact (Name) at 847-4590. Your cooperation will be appreciated.

Very truly yours,

Senior Sanitary Engineer

If all efforts to encourage a PRP/RP to continue the cleanup fail, send a certified letter (Exhibit 1.1-13) notifying them that their actions have been unsatisfactory and that DEC will assume responsibility for the cleanup. This letter again informs the PRP/RP of his or her liability for all costs incurred by DEC during its cleanup.

Unsatisfactory Cleanup Notice Letter

[Date]

CERTIFIED MAIL

SPILL #

[Addressee] [Address]

Dear Sir:

My letter of <u>(Date)</u> notified you of New York State's interest in a pollution incident for which you are presently considered responsible.

You are hereby given notice that your actions to remove the pollutant and mitigate its effects have been evaluated as unsatisfactory. Effective (Date), the New York State Department of Environmental Conservation will conduct all cleanup activities under the authority of Article 12 of the Navigation Law. Removal will be effected in accordance with the regulations of the Department of Environmental Conservation. You will be billed for all actual costs incurred by New York State as set forth in Section 181 of the Navigation Law, as well as interest and penalties.

Should you require further information concerning this matter, contact: (Name)

[

Sincerely,

1

Received and Acknowledged

Time

TECHNICAL

FIELD GUIDANCE

SPILL REPORTING AND INITIAL NOTIFICATIONS -ACCESS AND RIGHT-OF-ENTRY

<u>NOTES</u>

Spill Reporting and Initial Notifications -Access and Right-of-Entry

GUIDANCE SUMMARY AT-A-GLANCE

- # Section 178 of the Navigation Law gives you the authority to enter private property to investigate or clean up a suspected spill.
- # In general, you should inform the property owner of your right to enter onto private property and obtain consent from the owner. This consent can be either written or verbal.
- # Detailed information and procedures for access and right-of-entry is considered confidential for spill responders. This information is contained in Appendix L, and is marked confidential.

1.1.3 Access and Right-of-Entry

This section addresses the right of NYSDEC personnel to enter private property on which a spill has occurred or is suspected, for the purpose of investigating, containing, and/or cleaning up the spill. Detailed information and procedures of access and right-of-entry are considered confidential. Therefore, this information can be found in Appendix L, including your legal rights to enter property and the procedures to follow to ensure that no charges of trespassing are brought against the Department.

1. State Law and Policy

You have the authority, under the Navigation Law, to enter property to investigate or clean up a real or suspected spill. Specifically, Section 178 of the Navigation Law states:

The department is hereby authorized to enter and inspect any property or premises for the purpose of inspecting facilities and investigating either actual or suspected sources of discharges or violation of this article or any rule or regulations promulgated pursuant to this article. The department is further authorized to enter on property or premises in order to assist in the cleanup or removal of the discharge. Any information relating to secret processes or methods of manufacture shall be kept confidential.

In any emergency or non-emergency, you must possess information supporting a reasonable belief to suspect that a spill has occurred or is occurring, or that the spill is impacting the premises for which access is sought. A reasonable belief may be based on a report of a spill or visual observation. For example, if a gasoline station operator reports an unexpected loss of product from his underground storage tanks that are located near private household wells, you might want to investigate those wells and check the water.

Although you have the authority to enter the premises, *it is always advisable to obtain the consent of the property owner or his or her agent before entering the property.* This consent can be either written or verbal. Obtaining this consent may help avoid civil or criminal charges for trespass being logged. In cases where the owner/agent is not available or not ascertainable, entry should be made.

Appendix H – NYSDEC CP-51: Soil Cleanup Guidance

CP-51 / Soil Cleanup Guidance			
New York State Department of Environmental Conservation DEC Policy			
Issuing Authority: Alexander B. Grannis, Commissioner			
Date Issued: October 21, 2010	Latest Date Revised:		

I. Summary

This policy provides the framework and procedures for the selection of soil cleanup levels appropriate for each of the remedial programs in the New York State Department of Environmental Conservation (DEC) Division of Environmental Remediation (DER). This policy applies to the Inactive Hazardous Waste Disposal Site Remedial Program, known as the State Superfund Program (SSF); Brownfield Cleanup Program (BCP); Voluntary Cleanup Program (VCP); Environmental Restoration Program (ERP); Spill Response Program - Navigation Law (NL) section 176 (SRP); and the Resource Conservation and Recovery Act (RCRA) Corrective Action Program. It replaces *Technical and Administrative Guidance Memorandum (TAGM) 4046: Determination of Soil Cleanup Objectives and Cleanup Levels* (January 24, 1994); the *Petroleum Site Inactivation and Closure Memorandum* (February 23, 1998); and Sections III and IV of *Spill Technology and Remediation Series (STARS) #1* (August 1992).

This document is used in conjunction with the applicable statutes, regulations and guidance. Sitespecific soil cleanup levels, determined in accordance with this guidance, are only applied after:

- the site, or area of concern, is fully investigated to determine the nature and extent of contamination;
- all sources of contamination are addressed consistent with the hierarchy provided in 6 NYCRR 375-1.8(c) or consistent with the RCRA Corrective Action Program (as appropriate);
- groundwater, if contaminated, has been evaluated for appropriate remedial actions consistent with 6 NYCRR 375-1.8(d) or consistent with the RCRA Corrective Action Program (as appropriate); and
- impacts on adjacent residential properties, surface water, aquatic ecological resources are evaluated, as well as indoor air, soil vapor, vapor intrusion and other appropriate media.

II. Policy

It is DEC's policy, consistent with applicable statutes and regulations, that all remedies will be protective of public health and the environment. DEC's preference is that remedial programs, including the selection of soil cleanup levels, be designed such that the performance standard results in the implementation of a permanent remedy resulting in no future land use restrictions. However, some of

DEC's remedial programs are predicated on future site use. Further, it is not always feasible to return to a condition where no restrictions are required.

The procedures set forth herein are intended for the use and guidance of both DEC and remedial parties to provide a uniform and consistent process for the determination of soil cleanup levels. This guidance is not intended to create any substantive or procedural rights, enforceable by any party in administrative or judicial litigation with DEC. DEC reserves the right to act at variance with these procedures to address site-specific circumstances and to change the procedures in this guidance at any time.

Please note that this guidance focuses only on soil cleanup levels. All remedies must be fully protective of public health and the environment and must prevent further off-site migration to the extent feasible, with special emphasis on preventing or minimizing migration onto adjacent residential properties. A remedial party is required to evaluate and investigate, if necessary, all environmental media including soil, groundwater, surface water, sediments, soil vapor, ambient air, and biota. [See 6 NYCRR 375-1.8(a)(6) or RCRA Corrective Action Program (as appropriate)]. This investigation will determine if any of the referenced media are, or may be, impacted by site contamination. Applicable guidance should be consulted for media other than soil.

Nothing contained in this guidance, in itself, forms the basis for changes to previously selected remedies. However, a change in the site remedy may be considered consistent with *DER-2: Making Changes to Selected Remedies* (April 1, 2008). [See Section VI, Related References.] To the extent that a change to a selected remedy at a site in one of DER's remedial programs is necessary as provided in DER-2, as applicable, the Soil Cleanup Objectives (SCOs) may be considered in the evaluation of appropriate changes to the selected remedy. For sites in other programs, applicable regulations and guidance must be used.

III. Purpose and Background

DEC has a number of different remedial programs that were developed over time based on separate and distinct authorities. These programs use different procedures to determine the extent of soil cleanup necessary to satisfy the remedial program goals. The purpose of this document is to set forth how soil cleanup levels are selected for the different programs.

Legislation establishing New York State's Brownfield Cleanup Program (Article 27, Title 14 of the Environmental Conservation Law [ECL]) required DEC, in consultation with the New York State Department of Health (NYSDOH), to develop an approach for the remediation of contamination at brownfield sites. The resulting regulation includes seven sets of SCOs. Four sets provide for the protection of public health for different land uses (residential, restricted residential, commercial, and industrial); two sets provide for the protection of other resources (groundwater and ecological resources); and one set includes SCOs for protection of public health and the environment for all uses (unrestricted use).

With the promulgation of the SCOs, it is necessary to discuss how the SCOs, and soil cleanup levels generally, are arrived at for a specific site. Some key definitions in understanding how cleanup levels for soil are arrived at follow.

Feasible, which means suitable to site conditions, capable of being successfully carried out with available technology, implementable and cost effective [see 6 NYCRR 375-1.2(s)].

Presumptive remedy, which means a technology or technique where experience has shown the remedy to be a proven solution for specific types of sites and/or contaminant classes [See *DER-15: Presumptive/Proven Remedial Technologies* February 27, 2007. Refer to Section VI, Related References.]

Soil cleanup level, which means the concentration of a given contaminant for a specific site that must be achieved under a remedial program for soil. Depending on the regulatory program, a soil cleanup level may be based on the regulation [6 NYCRR 375-6.8(a) or (b)], modified from the regulatory value based on site-specific differences, or based on other information, including background levels or feasibility. Soil cleanup levels may include:

- SCOs promulgated at 6 NYCRR 375-6;
- Supplemental Soil Cleanup Objectives (SSCOs);
- a "totals" approach for a family of contaminants known as Polycyclic Aromatic Hydrocarbons (PAHs);
- Presumptive remedy for Polychlorinated Biphenyls (PCBs); and
- Nuisance Condition.

Soil Cleanup Objective (SCO), which means the chemical concentrations for soil cleanup of individual chemicals contained in 6 NYCRR 375-6.8(a) or (b). The SCOs were developed using the process outlined in the Technical Support Document (TSD). The SCOs and the SSCOs defined below are applicable statewide and do not account for many site-specific considerations which could potentially result in higher levels. Soil concentrations that are higher than the SCOs and SSCOs are not necessarily a health or environmental concern. When an SCO (or SSCO) is exceeded, the degree of public health or environmental concern depends on several factors, including the magnitude of the exceedance, the accuracy of the exposure estimates, other sources of exposure to the contaminant, and the strength and quality of the available toxicological information on the contaminant.

Supplemental Soil Cleanup Objective (SSCO), which means a) an existing soil cleanup level for a contaminant which had been included in former TAGM 4046 and was not included in 6 NYCRR 375-6; b) has been developed using the same process used for development of the SCOs; and c) new cleanup levels for soil developed by the remedial party following the approach detailed in Appendix E of the TSD. The TSD provides information relative to the development of cleanup objectives for soil that are not set forth in 6 NYCRR 375-6. Cleanup objectives that have been established at the direction of DEC or the election of remedial parties are included in Table 1.

Technical Support Document (TSD), which refers to the document dated December 2006 detailing the development of the SCOs that were promulgated in 6 NYCRR 375-6. It provides the technical background and provides a detailed discussion of the considerations for development of the SCOs for the different land uses and exposure pathways. The TSD is available on DEC's website [see Section VI, Related References].

The purpose of this guidance is NOT to focus on media other than soil. Accordingly, the remedial program may require remedial activities to address media other than soil (e.g., groundwater, surface

water, sediment, and vapor). Applicable guidance should be consulted for media other than soil. This guidance is to be used in conjunction with the applicable statutes, regulations and guidance. Site-specific soil cleanup levels, determined in accordance with this guidance, are only applied after:

- the site, or area of concern, is fully investigated to determine the nature and extent of contamination;
- all sources of contamination are addressed consistent with the hierarchy provided in 6 NYCRR 375-1.8(c) or consistent with the RCRA Corrective Action Program (as appropriate);
- groundwater, if contaminated, has been evaluated for appropriate remedial actions consistent with 6 NYCRR 375-1.8(d) or consistent with the RCRA Corrective Action Program (as appropriate); and
- an evaluation of impacts on adjacent residential properties, surface water, aquatic ecological resources, as well as indoor air, soil vapor, vapor intrusion and other appropriate media.

IV. Responsibility

The responsibility for maintaining and updating this policy lies with DER. DEC staff are responsible for implementing this policy, with input (as applicable) from NYSDOH.

V. Procedures

A. General Approaches to the Selection of Soil Cleanup Levels

The determination of soil cleanup levels for a site is dependent on:

- 1. The regulatory program pursuant to which the site is being addressed;
- 2. Whether the groundwater beneath or down gradient of the site is, or may become contaminated with site-related contaminants;
- 3. Whether ecological resources constitute an important component of the environment at or adjacent to a site, and which are, or may be, impacted by site-related contaminants; and
- 4. Other impacted environmental media such as surface water, sediment, and soil vapor.

After fully evaluating the nature and extent of soil contamination associated with a site, the soil cleanup levels will be based on one, or a combination of, the following four approaches.

Approach 1: **Utilize the Unrestricted Use Soil Cleanup Objectives** [see 6 NYCRR Table 375-6.8(a)]. Under this approach, the soil cleanup levels will be established consistent with the SCOs set forth in 6 NYCRR Table 375-6.8(a). For contaminants of concern which are not included in the rule, DEC may direct development of a soil cleanup level which is protective of public health and the environment without restrictions following the procedure outlined in Appendix E of the TSD. Under this approach, the unrestricted SCOs are applied throughout the soil matrix to the top of bedrock (including the saturated zone).

Approach 2: **Utilize the Restricted Use Soil Cleanup Objectives** [see 6 NYCRR Table 375-6.8(b)]. Under this approach, soil cleanup levels will be established consistent with the SCOs set forth in 6 NYCRR Table 375-6.8(b) selecting the lowest SCO in the categories described in A

through C below. Generally, after source removal, the soil cleanup levels do not need to be achieved to more than 15 feet below ground surface or to the top of bedrock, whichever is shallower.

- A. Select the applicable land use category for the protection of public health (residential, restricted residential, commercial or industrial);
- B. Determine if the SCOs for the protection of groundwater are applicable (see Section V.D); and
- C. Determine if the SCOs for the protection of ecological resources are applicable (see Section V.C).

Approach 3: **Limited Site-Specific Modifications to Soil Cleanup Objectives.** This approach allows for consideration of site-specific information to modify the SCOs promulgated in 6 NYCRR Tables 375-6.8 (a) and (b) following the approach detailed in Appendix E of the TSD. The equations and basic methodology specified for calculating the 6 NYCRR 375-6.8 (a) and (b) values may not be modified under this approach. However, in instances where site-specific parameters were used in the calculation of the SCOs, site data different from the assumptions used to calculate the SCOs may be used to modify the soil cleanup levels for a specific site. These instances are very limited and occur only in certain pathways that are listed below.

- Protection of groundwater pathway
- Particulate inhalation pathway
- Volatile inhalation pathway
- Protection of ecological resources pathway

It should be noted that even if site-specific data modifies these pathways, it may not result in modifying the SCOs because the lowest value from all applicable pathways is used to determine each SCO. The inhalation pathway is very seldom the controlling pathway in the determination of the protection of public health. The specific parameters that can be modified are identified in Appendix E of the TSD (e.g., inhalation dispersion terms, fraction of organic carbon in soil, etc.).

The remedial party should consider the cost of collecting the data necessary to support a request to modify the SCOs with the potential for deriving a higher SCO that provides an appropriate level of protection. The remedial party may be required to submit additional data to support the use of modified SCOs. Once DEC approves one or more modified SCOs, they are applied in the manner described under Approach 2.

Approach 4: **Site-Specific Soil Cleanup Objectives.** Under this approach, the remedial party may propose site-specific cleanup levels or approaches for soil which are protective of public health and the environment based on other information. This approach sets forth a flexible framework to develop soil cleanup levels by allowing the remedial party to conduct a more detailed evaluation of site information in an effort to calculate protective soil cleanup levels or approaches unique to a site. Under this approach, the remedial party may propose a remedy that does not include specific soil cleanup levels (e.g., excavate the top 6 feet in an area extending 75 feet in all directions from boring B12); modify the input parameters used in the SCO calculations; use site data to improve or confirm predictions of exposures to receptors to contaminants of concern; analyze site-specific risks using

risk assessments; use toxicological information available from alternate sources; or consider site background and historic fill. Data supporting these site-specific adjustments or use of alternate methodologies must also be provided to DEC for review and approval to ensure that the resulting soil cleanup levels are protective.

The Approach 4 framework leaves DEC with discretion to determine whether a different approach is appropriate for the site and, if a different approach is to be used, the proper method of implementation. The remedial party should consider the cost of collecting the data necessary to develop site-specific soil cleanup levels (or approaches) with the potential for deriving a soil cleanup level which is higher than a particular SCO and which provides an appropriate level of protection. The remedial party may also be required to submit additional data to support the use of methodologies in the calculation of site-specific soil cleanup levels or to support the proposed approach.

B. Application of Soil Cleanup Levels for the Specific Remedial Programs: Soil cleanup levels are determined on a site-specific basis depending on the program under which the site is being remediated. In some cases (e.g., BCP Track 1 or Track 2), the soil cleanup levels are the SCOs taken directly from 6 NYCRR 375-6. In other cases, soil cleanup levels may be derived from the Part 375 SCOs but modified based on other information. In yet other cases, the soil cleanup levels may have no relationship or connection to the SCOs, but rather be developed in accordance with DEC-approved methodologies or approaches.

1. <u>Inactive Hazardous Waste Disposal Site Remedial Program (State Superfund Program</u>): The goal of the remedial program for a specific site is to restore that site to pre-disposal conditions, to the extent feasible. The unrestricted use SCOs are considered to be representative of pre-disposal conditions unless an impact to ecological resources has been identified (see 6 NYCRR 375-2.8(b)(2)). However, it must be recognized that achievement of this goal may not be feasible in every case. At a minimum, all remedies must be protective of public health and the environment. The following procedure is used to determine the most feasible remedy.</u>

- (a) The remedial party shall evaluate, and if feasible, implement a cleanup utilizing Approach 1 (application of unrestricted SCOs).
- (b) Where DEC determines that achieving unrestricted SCOs is not feasible as documented in a feasibility study, the remedial party may evaluate alternatives to remediate the site to the greatest extent feasible (see *DER-10: Technical Guidance for Site Investigation and Remediation*, Chapter 4.3). [See Section VI, Related References.] In this event, the remedial party may propose soil cleanup levels in accordance with any of the general approaches. However, when considering restricted use soil cleanup levels, the remedial party should apply the least restrictive use category feasible. For purposes of this discussion, residential use is the least restrictive use and industrial use is the most restrictive category. This process starts with consideration of residential use, followed by restricted residential use, commercial use, and then industrial use. The evaluation proceeds through the different land uses until a feasible remedy is found. This evaluation is not bound to the SCOs in regulation or SSCOs set forth in this guidance but may result in a site-specific soil cleanup level that is between the SCOs or soil cleanup level for two different land uses (e.g., above the restricted residential SCO and below the commercial SCO).

2. <u>Brownfield Cleanup Program</u> The remedy shall be fully protective of public health and the environment, including, but not limited to, groundwater according to its classification pursuant to ECL 17-0301, drinking water, surface water, air (including indoor air), sensitive populations (including children), and ecological resources (including fish and wildlife). Soil cleanup levels corresponding to the cleanup track under which the site is being remediated are required to be met. The four cleanup tracks are:

<u>**Track 1**</u>: Cleanups pursuant to this track must achieve unrestricted use of the site. This track requires that the remedial party implement a cleanup utilizing Approach 1. Institutional and engineering controls are allowed only for periods of less than five years (defined as short-term controls) except in the limited instance where a volunteer has conducted remedial activities resulting in a bulk reduction in groundwater contamination to asymptotic levels.

Track 2 : Cleanups pursuant to this track may consider the current, intended, or reasonably anticipated future use in determining the appropriate cleanup levels for soil. This track requires that the remedial party implement a cleanup that achieves the SCOs in the tables in 6 NYCRR 375-6.7(b) for the top 15 feet of soil (or bedrock if less than 15 feet). This track follows approach 2. Institutional and engineering controls are allowed for soil (for the top 15 feet of soil or bedrock if less than 15 feet) for less than five years (defined as short-term controls). Institutional and engineering controls which limit site use and the use of onsite groundwater can be used without regard to duration. Track 2 cleanups at restricted residential, commercial or industrial use sites require site management plans to ensure that material removed from the site (post remedial action) is managed appropriately and to ensure that any buffer zone protecting adjacent residential use sites or ecological resources is maintained.

Track 3: Cleanups pursuant to this track may consider the current, intended, or reasonably anticipated use in determining the appropriate cleanup levels for soil. This track requires that the remedial party implement a cleanup utilizing Approach 3 for those SCOs which the remedial party seeks to modify an established SCO. Institutional and engineering controls are allowed for soil (for the top 15 feet of soil or bedrock if less than 15 feet) for less than 5 years (defined as short-term controls). Institutional and engineering controls which limit site use and the use of onsite groundwater can be used without regard to duration. Track 3 cleanups at restricted residential, commercial or industrial use sites require site management plans to ensure that material removed from the site (post remedial action) is managed appropriately and to ensure that any buffer zone protecting adjacent residential use sites or ecological resources is maintained.

Track 4: Cleanups pursuant to this track may consider the current, intended, or reasonably anticipated use in determining the appropriate cleanup levels for soil. This track allows for the development of site-specific soil cleanup levels below the cover system in accordance with Approach 4. Track 4 remedies must address all sources as a component of the remedy. Short-and long-term institutional and engineering controls are allowed to achieve protection of public health and the environment. The remedy under Track 4 must provide a cover system over exposed residual soil contamination. Soils which are not otherwise covered by structures such as buildings, sidewalks or pavement (i.e., exposed surface soils) must be covered with soil that complies with the use-based SCOs in 6 NYCRR Table 375-6.8(b) levels for the top one foot (non-residential uses) or top two feet (restricted residential use).

3. <u>Environmental Restoration Program</u>: The goal of the program for a specific site is to select a remedy that is protective of public health and the environment, including, but not limited to, groundwater according to its classification pursuant to ECL 17-0301, drinking water, surface water and air (including indoor air), sensitive populations (including children) and ecological resources (including fish and wildlife). At a minimum, the remedy selected shall eliminate or mitigate all significant threats to public health and to the environment presented by contaminants disposed at the site through the proper application of scientific and engineering principles. Soil cleanup levels may be developed in accordance with Approaches 1 - 4 without restriction.

4. <u>Voluntary Cleanup Program</u>: The goal of the program for a specific site is to select a remedy that is protective of public health and the environment for the contemplated use. The soil cleanup levels may be developed in accordance with Approaches 1 - 4 without restriction.

5. <u>Petroleum Spill Response Program</u>: The goal of the Petroleum Spill Response Program is to achieve pre-spill conditions [6 NYCRR 611.6(a)(4)]. Remedial activities under this program shall be undertaken relative to the petroleum contamination that was released along with any co-mingled contamination from other sources. The remedial party shall achieve, to the extent feasible, the unrestricted SCOs for petroleum-related contaminants listed in 6 NYCRR Table 375-6.8(a). For petroleum contaminants not included in 6 NYCRR Table 375-6.8(a) (discussed in Section E below), the remedial party shall apply, to the extent feasible, the soil cleanup levels provided in Table 1. For ease of implementation, two lists of petroleum contaminants (Gasoline and Fuel Oil, Tables 2 and 3) are attached. The tables combine the applicable petroleum-related SCOs from 6 NYCRR 375-6.8(a) and the applicable petroleum related SSCOs from Table 1. Where DEC determines that it is not feasible to achieve the soil cleanup levels as set forth in this paragraph, the remedial party may propose soil cleanup levels in accordance with any of the general approaches. However, when considering restricted use soil cleanup levels, the remedial party should apply the least restrictive use category feasible.

For purposes of this discussion, residential use is the least restrictive use, and industrial use is the most restrictive category. This process starts with consideration of residential use, followed by restricted residential use, commercial use, and then industrial use. The evaluation proceeds through the different land uses until a feasible remedy is found. If the protection of groundwater or ecological SCOs apply, the lower of the applicable protection of the public health SCO or the applicable protection of groundwater or ecological SCOs should be achieved to the extent feasible. This evaluation is not bound to the SCOs in regulation or the SSCOs set forth in this guidance but may result in a site-specific soil cleanup level that is between the SCOs or soil cleanup level for two different land uses (e.g., above the restricted residential SCO and below the commercial SCO).

6. <u>RCRA Corrective Action Program</u>: The RCRA program was promulgated to regulate facilities that actively manage hazardous waste. DER administers the RCRA Corrective Action Program, with a goal of achieving soil cleanup levels at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) that eliminate risks to public health and the environment (i.e., clean the site to unrestricted use) or control said risks (i.e., clean the site or unit(s) to the lowest possible soil cleanup objective, regardless of site use), to the extent feasible. This goal takes into account that certain units at the facility may be permitted to manage hazardous waste under New York State's Hazardous Waste Management (HWM) regulations (6 NYCRR Part 373). The requirements of active HWM facilities, as well as the site's history, will be considered when soil cleanup levels are determined. Selected remedies must be protective of public health and the environment. Soil cleanup levels will be selected using the following procedure.

- (a) The remedial party shall evaluate, and if feasible, implement a cleanup utilizing Approach 1. Under this approach, the unrestricted SCOs apply to the entire soil matrix to the top of bedrock. For contaminants not listed in 6 NYCRR 375-6, a new or existing SSCO may be used.
- (b) If DEC determines that achieving unrestricted SCOs is not feasible, the remedial party may evaluate other alternatives to remediate the site. In this event, the remedial party may propose soil cleanup levels in accordance with any of the general approaches. However, when considering restricted use soil cleanup levels, the remedial party shall apply the use category which is both feasible and least restricted. For purposes of this discussion, residential use is the least restricted category and industrial use is the most restricted category. A soil cleanup level between two different land uses (e.g., residential and restricted residential) may be determined to be feasible, and if selected, must be achieved.

Any soil cleanup levels specified in regulation (i.e., 6 NYCRR 373-2.6(b)-(k) for "regulated units" as defined in 6 NYCRR 373-2.6 (a)(1)(ii)) or in a DEC enforceable document (Part 373 permits, Consent Orders, etc.) shall take precedence over the soil cleanup levels which could be established through use of this document.

C. Determination of Whether Ecological Resources SCOs Apply to a Site: SCOs developed to protect ecological resources (ESCOs) are incorporated in the Unrestricted Use SCO in 6 NYCRR Table 375-6.8(a) and are included as a separate category in 6 NYCRR Table 375-6.8(b). For contaminants of concern which do not have a calculated ESCO in regulation, DEC may direct the remedial party to develop a soil cleanup level which is protective of ecological resources where appropriate, based on the process outlined in Appendix E of the TSD.

The presence of ecological resources and any impact to those resources will be assessed during the remedial investigation. For sites where there is the potential for an ecological resource impact to be present, or where it is likely to be present, an assessment of fish and wildlife resource impacts will be performed. For sites in DER's SSF, BCP, VCP and ERP, the assessment will be performed in accordance with DEC's guidance, *Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites*, October, 1994, as described in DER-10, Section 3.10. For sites in the RCRA Corrective Action Program, the assessment will be performed using the above referenced fish and wildlife impact analysis document as guidance, and by consulting with appropriate personnel in DEC's Division of Fish, Wildlife and Marine Resources.

Soil cleanup levels which are protective of ecological resources must be considered and applied, as appropriate, for the upland soils (not sediment) at sites where DEC determines, based on the foregoing analysis, that:

- ecological resources are present, or will be present, under the reasonably anticipated future use of the site, and such resources constitute an important component of the environment at, or adjacent to, the site;
- an impact or threat of impact to the ecological resource has been identified; and
- contaminant concentrations in soil exceed the ESCOs as set forth in 6 NYCRR 375-6.8(b) or the Protection of Ecological Resources SSCOs contained in this document.

Sites or portions thereof that will be covered by buildings, structures or pavement are not subject to the ESCOs. Further, ecological resources do not include pets, livestock, agricultural or horticultural crops, or landscaping in developed areas. (See 6 NYCRR 375-6.6 for more detail.)

D. Determination of Whether Protection of Groundwater SCOs Apply: SCOs developed to protect groundwater are incorporated in the Unrestricted Use SCOs in 6 NYCRR Table 375-6.8(a) and are included as a separate category in 6 NYCRR Table 375-6.8(b). For contaminants of concern which do not have a protection of groundwater SCO, DEC may direct the remedial party to develop a soil cleanup level which is protective of groundwater using the process in Appendix E of the TSD.

- 1. Except as provided for in (2) below, the protection of groundwater SCOs will be applicable where:
 - (i) contamination has been identified in on-site soil by the remedial investigation; and
 - (ii) groundwater standards are, or are threatened to be, contravened by the presence of soil contamination at concentrations above the protection of groundwater SCOs.
- 2. DEC may provide an exception to the applicability of the protection of groundwater SCOs, as set forth in 6 NYCRR 375-6.5(a)(1), when (i), (ii), and (iii) exist and either (iv) or (v) also apply, as described below.
 - (i) The groundwater standard contravention is the result of an on-site source which is addressed by the remedial program.
 - (ii) An environmental easement or other institutional control will be put in place which provides for a groundwater use restriction.
 - (iii) DEC determines that contaminated groundwater at the site:
 - (a) is not migrating, nor is likely to migrate, off-site; or
 - (b) is migrating, or is likely to migrate, off-site; however, the remedy includes active groundwater management to address off-site migration.
 - (iv) DEC determines the groundwater quality will improve over time.
 - (v) The groundwater contamination migrating from the site is the result of an off-site source of contamination, and site contaminants are not contributing consequential amounts to the groundwater contamination.
- 3. In determining whether to provide the exemption set forth in subparagraph 2 above, DEC will consider:
 - (i) all of the remedy selection criteria at 6 NYCRR 375-1.8(h) or in the RCRA Corrective Action program;
 - (ii) the amount of time that the groundwater will need to be actively managed for the protection of public health and the environment; and
 - (iii) the potential impact that groundwater contamination may have on media not specifically addressed by the SCOs (e.g., vapor intrusion, protection of surface water, and protection of aquatic ecological resources).

E. Supplemental Soil Cleanup Objectives: SSCOs are either existing cleanup levels in Table 1 or are new soil cleanup levels developed by the remedial party as part of its remedial program. These SSCOs are in addition to the SCOs that are included in Part 375.

Existing SSCOs: The Table 1 list of SSCOs includes contaminants from former TAGM 4046 that were not included in 6 NYCRR 375-6.8 and soil cleanup levels developed using the process detailed in Appendix E of the TSD but not promulgated. For those contaminants which were part of the former TAGM 4046, soil cleanup levels exist for the protection of public health (based on ingestion) and for the protection of groundwater. In some cases, to be determined on a site-by-site basis, evaluation of other factors is likely needed for the protection of public health, especially when the use of a site includes residential use.

These other factors include other exposure pathways (e.g., homegrown vegetable ingestion, inhalation and dermal contact), potential non-site exposures to the contaminant and current toxicological data on the contaminant. In these instances, DEC (in consultation with NYSDOH) will determine if the additional factors have been adequately addressed. The SSCOs identified in Table 1 (subject to the limitation described above) may be used as if they were included in Part 375. A remedial party is not required to use the SSCOs set forth in Table 1. In lieu of applying an SSCO, the remedial party may elect to develop a soil cleanup level (using the process described in Appendix E of the TSD and discussed below.) Table 1 also includes SSCOs that were developed for some pathways using the same process detailed in the TSD. A remedial party may elect to use those SSCOs directly or confirm that the calculated value for that pathway is correct.

New SSCOs: The remedial party may elect to, or DEC may direct a remedial party to, develop a contaminant-specific SCO for any contaminant not included in 6 NYCRR Tables 375-6.8(a) or (b). Generally, DEC will request that an SCO be developed only where the contaminant is a predominant contaminant of concern (COC) at the site and is not otherwise being addressed to DEC's satisfaction as part of the proposed remedy. This could happen, for example, when a remedial party is seeking a Track 1 cleanup and non-SCO/SSCO contaminants are present and may not be satisfactorily addressed by the remedial activities addressing the SCOs or SSCOs. Guidance on the process for developing new SCOs is provided in Appendix E of the TSD. DEC will include all newly developed soil cleanup levels, developed and approved pursuant to this paragraph in a revised Table 1. The developed SSCO must:

- 1. be developed utilizing the same methodologies that were used by DEC to develop SCOs that are set forth in Part 375; and
- 2. apply the maximum acceptable soil concentrations (caps), as set forth in section 9.3 of the TSD.

F. Use of SCOs and SSCOs as a Screening Tool: The SCOs and SSCOs may be used to identify areas of soil contamination and to determine the extent of soil contamination. As noted in Section V.K, consideration of other media is required to determine if remedial action is needed.

1. At sites or areas of concern where contaminant concentrations are equal to or below the unrestricted SCOs in 6 NYCRR Table 375-6.8(a), no action or study is warranted because of soil contamination.

- 2. The exceedance of one or more applicable SCOs or SSCOs, (which is the lower of protection of public health, protection of groundwater, or protection of ecological resources soil cleanup objectives as described in Section III below), alone does not trigger the need for remedial action, define "unacceptable" levels of contaminants in soil, or indicates that a site qualifies for any DEC remedial program (e.g., BCP, SSF). As noted in the definition of SCO above, SCOs and SSCOs are applicable statewide and do not account for many site-specific considerations which could potentially result in higher levels. Therefore, soil concentrations that are higher than the applicable SCOs or SSCOs are not necessarily health or environmental concerns.
- 3. When an applicable SCO or SSCO is exceeded, the degree of public health or environmental concern depends on several factors, including:
 - magnitude of the exceedance;
 - accuracy of the exposure estimates;
 - other sources of exposure to the contaminant; and
 - strength and quality of the available toxicological information on the contaminant.

G. Soil Cleanup Levels for Nuisance Conditions: Experience has shown that contaminants in soil that meets the DEC-approved soil cleanup levels can exhibit a distinct odor or other type of nuisance (e.g., staining). This is true even though the contaminants will not leach from the soil (e.g., certain soils with more insoluble substances at higher concentrations). When DEC determines that soil remaining after the remedial action will result in the continuation of a nuisance (e.g., odors, staining, etc), DEC will require that additional remedial measures be evaluated, and may require additional remedial actions be taken to address the nuisance condition.

H. Subsurface Soil Cleanup for Total Polycyclic Aromatic Hydrocarbons: For non-residential use sites (i.e., commercial or industrial use sites) where the ESCOs are not applicable, DEC may approve a remedial program which achieves a soil cleanup level of 500 parts per million (ppm) for total PAHs for all subsurface soil. The 500 ppm soil cleanup level is in lieu of achieving all of the PAH-specific SCOs in 6 NYCRR 375-6. For purposes of this provision, subsurface soil shall mean the soil beneath permanent structures, pavement, or similar cover systems; or at least one foot of soil cover (which must meet the applicable SCOs). Institutional controls (e.g., an environmental easement) along with a site management plan will be required when this soil cleanup level is employed at a site. This cleanup level is determined to be feasible and protective based on DEC's experience in its various remedial programs. This approach has existed in TAGM 4046 since it was first issued in 1992.

I. Soil Cleanup for PCBs: DEC may approve a remedial program which achieves a soil cleanup level for PCBs as set forth herein:

- 1. **For Non-BCP sites:** An acceptable presumptive remedy for soil where neither the unrestricted SCOs nor the ESCOs are applied in the remedial program may include a soil cleanup level for PCBs of 1 ppm in the surface soils and 10 ppm in subsurface soils.
- 2. For BCP sites: An acceptable presumptive remedy for soil may include a soil cleanup level for PCBs of 1 ppm (the applicable SCO) in the surface soils and 10 ppm in subsurface in limited circumstances as follows:

- cleanup track is Track 4;
- site use will be restricted residential, commercial or industrial; and
- ESCOs do not apply.
- 3. At industrial use sites, a level of 25 ppm for PCBs provided that access is limited and individual occupancy is restricted to less than an average of 6.7 hours per week.

For purposes of this provision, subsurface soil shall mean:

- soil beneath permanent structures, pavement, or similar cover systems;
- soil beneath 1 foot of soil cover for commercial and industrial uses; or
- soil beneath 2 feet of soil cover for residential and restricted residential uses.

Institutional controls (i.e., an environmental easement), along with a site management plan, will be required when this soil cleanup level is employed at a site. As with all presumptive remedies, just because a remedy is presumptive does not mean that it will work at every site. For example, this presumptive remedy for PCBs in soil is not applicable at most landfills. This cleanup level is determined to be feasible and protective based on DEC's experience in its various remedial programs. Further, this approach has existed in TAGM 4046 since it was first issued in 1992.

J. Sampling and Compliance with Soil Cleanup Levels: The number of samples to determine if the SCOs have been achieved should be sufficient to be representative of the area being sampled. See attached Table 4 for suggested sampling frequency and subdivision 5.4(e) of DER-10 for details. This frequency can be used for confirmatory samples or for backfill. It is DEC's goal that all confirmatory samples demonstrate that the remedy has achieved the DEC-approved soil cleanup levels. However, recognizing the heterogeneity of contaminated sites and the uncertainty of sampling and analysis, DEC project manager has limited discretion to determine that remediation is complete where some discrete samples do not meet the soil cleanup levels established for a site. See DER-10 for more information regarding the determination that remediation is complete.

K. Other Considerations: All remedies must be fully protective of public health and the environment and prevent off-site migration to the extent feasible with special emphasis for the prevention or minimization of migration onto adjacent residential properties or into ecological resources. A remedial party is required to investigate all environmental media including soil, groundwater, surface water, sediments, soil vapor, indoor air, and biota. (See 6 NYCRR 375-1.8(a)(6) or RCRA Corrective Action Program). This investigation will determine if any of the referenced media are, or may be, impacted by site contamination. However, the SCOs do not directly address these other media. DEC may require remedial actions to address such media and impacts, including but not limited to the application of lower soil cleanup levels or buffer zones where it determines, based on the investigation, that any of these media are, or may be, impacted by site contamination.

VI. Related References:

- Environmental Conservation Law, Article 27 Titles 3, 5, 9, 13 and 14.
- Article 12 of the Navigation Law, Section 178.

- 6 NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.
- 6 NYCRR Subparts 373-1, 373-2 and 373-3, Requirements for Hazardous Waste Management Facilities. September 6, 2006.
- 6 NYCRR Part 611, Environmental Priorities and Procedures in Petroleum Cleanup and Removal. November 5, 1984 (amended).
- <u>Development of Soil Cleanup Objectives: Technical Support Document</u>. New York State Department of Environmental Conservation. December 14, 2006.
- Supplemental Guidance to RAGS: Calculating the Concentration Term. United States Environmental Protection Agency. Publication 9285.7-081. May 1992.
- New York State Guidelines for Urban Erosion and Sediment Control. 1997.
- Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites. New York State Department of Environmental Conservation. October 1994.
- <u>Program Policy DER-2</u>, *Making Changes to Selected Remedies*. New York State Department of Environmental Conservation. April 1, 2008.
- <u>Program Policy DER-10, Technical Guidance for Site Investigation and Remediation</u>. New York State Department of Environmental Conservation. May 3, 2010.
- Program Policy DER-15, Presumptive/Proven Remedial Technologies. New York State Department of Environmental Conservation. February 27, 2007.

TABLES

- 1 Supplemental Soil Cleanup Objectives
- 2 Soil Cleanup Levels for Gasoline Contaminated Soils
- **3 Soil Cleanup Levels for Fuel Oil Contaminated Soils**
- 4 Recommended Number of Soil Samples for Soil Imported to or Exported From a Site

Table 1

Supplemental Soil Cleanup Objectives (ppm)

Contaminant	CAS Number	Residential	Restricted Residential	Commercial	Industrial	Protection of Ecological Resources	Protection of Ground- water
METALS				-		-	
Aluminum	7429-90-5					10,000 ^{a,b}	
Antimony	7440-36-0					12 ^c	
Boron	7440-42-8					0.5	
Calcium	7440-70-2					10,000 ^{a,b}	
Cobalt	7440-48-4	30				20	
Iron	7439-89-6	2,000					
Lithium	7439-93-2					2	
Molybdenum	7439-98-7					2	
Technetium	7440-26-8					0.2	
Thallium	7440-28-0					5 °	
Tin	7440-31-5					50	
Uranium	7440-61-1					5	
Vanadium	7440-62-2	100 ^a				39 ^b	
PESTICIDES							
Biphenyl	92-52-4					60	
Chlordecone (Kepone)	143-50-0					0.06	
Dibenzofuran	132-64-9						6.2
2,4-D (2,4-Dichloro- phenoxyacetic acid)	94-75-7	100 ^a					0.5
Furan	110-00-9					600	
Gamma Chlordane	5103-74-2	0.54					14
Heptachlor Epoxide	1024-57-3	0.077					0.02
Methoxychlor	72-43-5	100 ^a				1.2	900

Contaminant	CAS Number	Residential	Restricted Residential	Commercial	Industrial	Protection of Ecological Resources	Protection of Ground- water
Parathion	56-38-2	100 ^a					1.2
2,4,5-T	93-76-5	100 ^a					1.9
2,3,7,8-TCDD	1746-01-6					0.000001	
2,3,7,8-TCDF	51207-31-9					0.000001	
SEMIVOLATILE	ORGANIC C	COMPOUND	S				
Aniline	62-53-3	48	100 ^a	500 ^a	1000 ^a		0.33 ^b
Bis(2-ethylhexyl) phthalate	117-81-7	50				239	435
Benzoic Acid	65-85-0	100 ^a					2.7
Butylbenzyl- phthalate	85-68-7	100 ^a					122
4-Chloroaniline	106-47-8	100 ^a					0.22
Chloroethane	75-00-3						1.9
2-Chlorophenol	95-57-8	100 ^a				0.8	
3-Chloroaniline	108-42-9					20	
3-Chlorophenol	108-43-0					7	
Di-n-butyl- phthalate	84-74-2	100 ^a				0.014	8.1
2,4-Dichlorophenol	120-83-2	100 ^a				20	0.40
3,4-Dichlorophenol	95-77-2					20	
Diethylphthalate	84-66-2	100 ^a				100	7.1
Di- <i>n</i> -hexyl- phthalate	84-75-3					0.91	
2,4-Dinitrophenol	51-28-5	100 ^a				20	0.2
Dimethylphthlate	131-11-3	100 ^a				200	27
Di-n-octylphthlate	117-84-0	100 ^a					120
1,2,3,6,7,8-HCDF	57117-44-9					0.00021	
Hexachloro- benzene	118-74-1	0.41					1.4
2,6-Dinitrotoluene	606-20-2	1.03					1.0
Isophorone	78-59-1	100 ^a					4.4

Contaminant	CAS Number	Residential	Restricted Residential	Commercial	Industrial	Protection of Ecological Resources	Protection of Ground- water
4-methyl-2- pentanone	108-10-1						1.0
2-methyl- naphthalene	91-57-6	0.41					36.4
2-Nitroaniline	88-74-4						0.4
3-Nitroaniline	99-09-2						0.5
Nitrobenzene	98-95-3	3.7	15	69	140	40	0.17 ^b
2-Nitrophenol	88-75-5					7	0.3
4-Nitrophenol	100-02-7					7	0.1
Pentachloroaniline	527-20-8					100	
2,3,5,6- Tetrachloroaniline	3481-20-7					20	
2,3,4,5- Tetrachlorophenol	4901-51-3					20	
2,4,5- Trichloroaniline	636-30-6					20	
2,4,5- Trichlorophenol	95-95-4	100 ^a				4	0.1
2,4,6- Trichlorophenol	88-06-2					10	
VOLATILE ORGA	NIC COMP	OUNDS					
2-Butanone	78-93-3	100 ^a					0.3
Carbon Disulfide	75-15-0	100 ^a					2.7
Chloroacetamide	79-07-2					2	
Dibromochloro- methane	124-48-1					10	
2,4- Dichloro aniline	554-00-7					100	
3,4- Dichloroaniline	95-76-1					20	
1,2- Dichloropropane	78-87-5					700	
1,3- Dichloropropane	142-28-9						0.3
2,6-Dinitrotoluene	606-20-2	1.03					0.17 ^b
Ethylacetate	141-78-6					48	

Contaminant	CAS Number	Residential	Restricted Residential	Commercial	Industrial	Protection of Ecological Resources	Protection of Ground- water
4-methyl-2- pentanone	108-10-1						1.0
113 Freon (1,1,2- TFE)	76-13-1	100 ^a					6
isopropylbenzene	98-82-8	100 ^a					2.3
p-isopropyltoluene	99-87-6						10
Hexachlorocyclo- pentadiene	77-47-4					10	
Methanol	67-56-1					6.5	
N-nitrosodiphenyl- amine	86-30-6					20	
Pentachloro- benzene	608-93-5					20	
Pentachloronitro- benzene	82-68-8					10	
Styrene	100-42-5					300	
1,2,3,4- Tetrachlorobenzene	634-66-2					10	
1,1,2,2- Tetrachloroethane	79-34-5	35					0.6
1,1,2,2- Tetrachloroethylene	127-18-4					2	
1,2,3- Trichlorobenzene	87-61-6					20	
1,2,4- Trichlorobenzene	120-82-1					20	3.4
1,2,3- Trichloropropane	96-18-4	80					0.34

^a SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

^bBased on rural background study

^c SCO limited by contract required quantitation limit.

Table 2

Contaminant	CAS Registry Number	Soil Cleanup Level (ppm)
Benzene	71-43-2	0.06
n-Butylbenzene	104-51-8	12.0
sec-Butylbenzene	135-98-8	11.0
Ethylbenzene	100-41-4	1.0
Isopropylbenzene	98-82-8	2.3
p-Isopropyltoluene	99-87-6	10.0
Methyl-Tert-Butyl-Ether	1634-04-4	0.93
Naphthalene	91-20-3	12.0
n-Propylbenzene	103-65-1	3.9
Tert-Butylbenzene	98-06-6	5.9
Toluene	108-88-3	0.7
1,2,4-Trimethylbenzene	95-63-6	3.6
1,3,5-Trimethylbenzene	108-67-8	8.4
Xylene (Mixed)	1330-20-7	0.26

Soil Cleanup Levels for Gasoline Contaminated Soils

Table 3

Contaminant	CAS Registry Number	Soil Cleanup Level (ppm)
Acenaphthene	83-32-9	20
Acenaphthylene	208-96-8	100
Anthracene	120-12-7	100
Benz(a)Anthracene	56-55-3	1.0
Dibenzo(a,h)Anthracene	53-70-3	0.33
Benzene	71-43-2	0.06
n-Butylbenzene	104-51-8	12.0
sec-Butylbenzene	135-98-8	11.0
Tert-Butylbenzene	98-06-6	5.9
Chrysene	218-01-9	1.0
Ethylbenzene	100-41-4	1.0
Fluoranthene	206-44-0	100
Benzo(b)Fluoranthene	205-99-2	1.0
Benzo(k)Fluoranthene	207-08-9	0.8
Fluorene	86-73-7	30
Isopropylbenzene	98-82-8	2.3
p-Isopropyltoluene	99-87-6	10.0
Naphthalene	91-20-3	12.0
n-Propylbenzene	103-65-1	3.9
Benzo(g,h,i)Perylene	191-24-2	100
Phenanthrene	85-01-8	100
Pyrene	129-00-0	100
Benzo(a)Pyrene	50-32-8	1.0
Indeno(1,2,3-cd)Pyrene	193-39-5	0.5
1,2,4-Trimethylbenzene	95-63-6	3.6
1,3,5-Trimethylbenzene	108-67-8	8.4
Toluene	108-88-3	0.7
Xylene (Mixed)	1330-20-7	0.26

Soil Cleanup Levels for Fuel Oil Contaminated Soil

Table 4

Contaminant	VOCs ^a	SVOCs, Inorgan	nics & PCBs/Pesticides
Soil Quantity (cubic yards)	Discrete Samples	Composite	Discrete Samples/Composite
0-50	1	1	
50-100	2	1	
100-200	3	1	Each composite sample for
200-300	4	1	analysis is created from 3-5
300-400	4	2	discrete samples from representative locations in
400-500	5	2	the fill.
500-800	6	2	
800-1000	7	2	
▶ 1000	Add an additional 2 VOC or consult with DER. ^b	C and 1 composite for each	ch additional 1000 Cubic yards

Recommended Number of Soil Samples for Soil Imported To or Exported From a Site

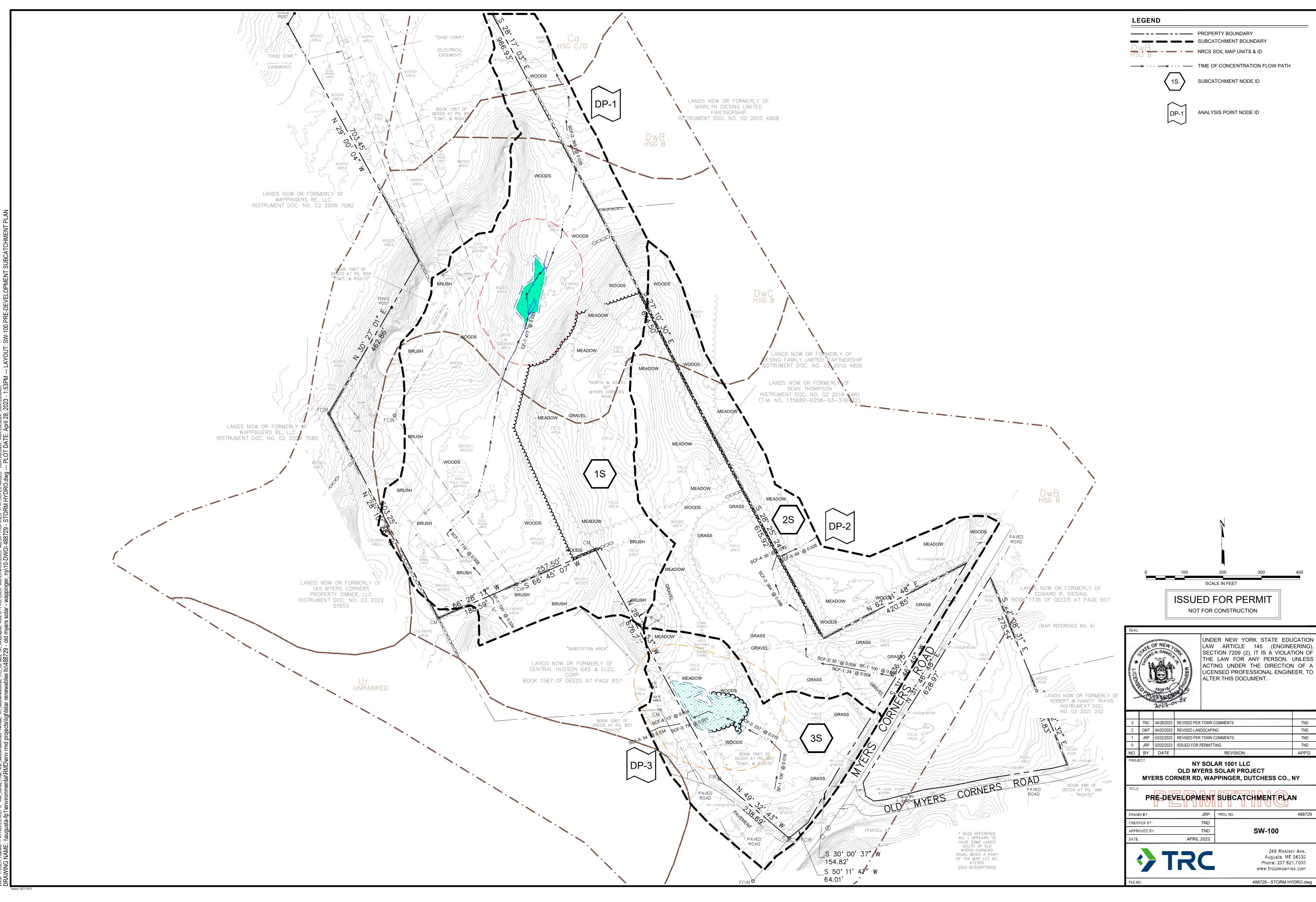
^a VOC samples cannot be composited. Discrete samples must be taken to maximize the representativeness of the results.

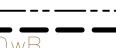
^b For example, a 3,000 cubic yard soil pile to be sampled and analyzed for VOCs would require 11 discrete representative samples. The same pile to be sampled for SVOCs would require 4 composite samples with each composite sample consisting of 3-5 discrete samples.

Appendix I – Post-Construction Operation and Maintenance (O&M) <u>Manual</u>

Post-Construction Operation and Maintenance Manual: Maintenance Inspection Form

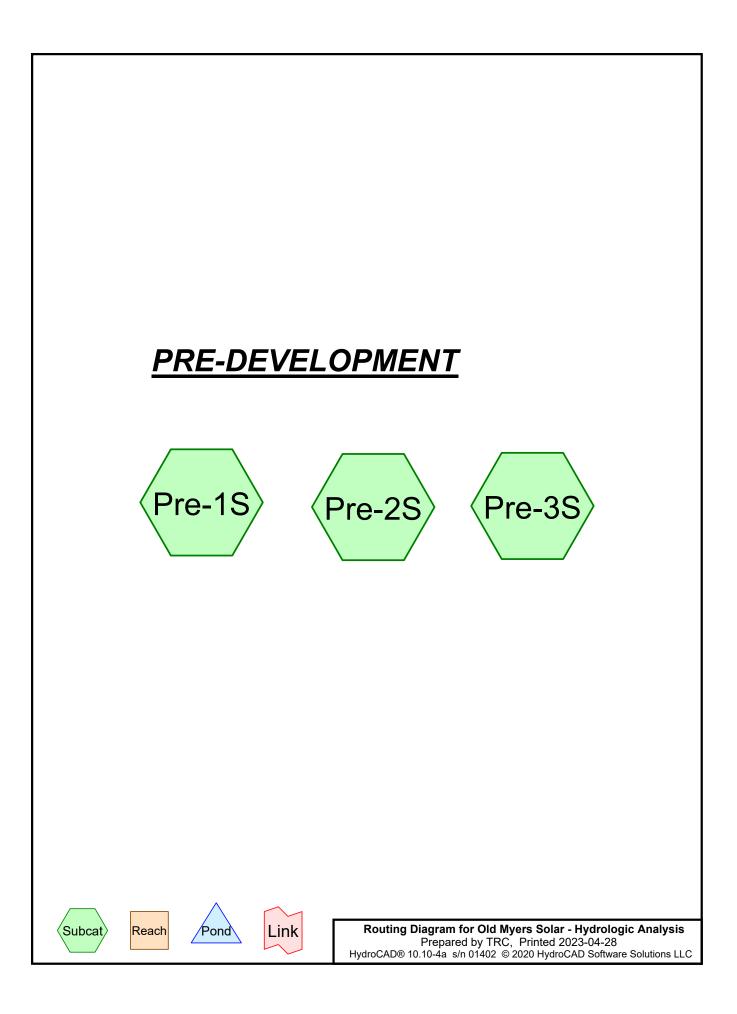
Project Name:	
Inspection Date:	
Inspection Time:	
Inspector's Name:	


Inspection Item	Inspection Frequency	Maintenance Required?	Comments
		Swale(s)	
Free of trash, debris, and pollutants?	Monthly		
Erosion and/or sedimentation observed?	Annually		
Spillway is stable and is free of erosion or sedimentation?	Annually		
Channel dewaters between storm events?	Monthly		
Blockage of flow present in the swale, culverts or underdrains?	Monthly		
Vegetation is healthy and sufficient ground cover is observed?	Monthly		
Vegetation is mowed to a minimum height of 8 inches?	Monthly		
		Infiltration Facil	ities
Facility is functioning properly?	Annually		
Free of trash, debris, and pollutants?	Monthly		
System is draining properly?	Monthly		
Sediment accumulation has reached 2 inches or greater?	Annually		
Vegetation is healthy and sufficient ground cover is observed?	Annually		
Vegetation is mowed to a minimum height of 8 inches?	Annually		
Overflow area is in good condition?	Annually		
		Dissipaters (Flo	ow Diffuser)
Free of trash, debris, and pollutants?	Annually		
Erosion and/or sedimentation observed?	Annually		
Facility is operating properly?	Annually		
		ulverts and Dra	inage Pipes
Free of trash, debris, and pollutants?	Annually		
Culvert/pipe is free of obstructions and functioning properly?	Annually		
Vegetation at the inlet and outlet is properly maintained?	Annually		
Culvert/pipe is not damaged (cracked, warped, corroded, etc.)?	Annually		


Inspection Item	Inspection Frequency	Maintenance Required?	Comments
25% or more of the culvert/pipe structure has been compromised?	Annually		
		End Sections	5
Free of trash, debris, and pollutants?	Semi-Annually		
Erosion and/or sedimentation is observed?	Semi-Annually		
Rocks at the outlet have not been displaced or are insufficient?	Semi-Annually		
Vegetation is impeding the flow of stormwater from the structure?	Semi-Annually		
	Fenc	es, Gates, and	Signage
Fencing and gates are in working order and are not damaged?	Annually		
Signage is legible and displayed clearly?	Annually		
Vegetation is maintained to not impede gated access or block signage?	Annually		
		Access Road	S
Road surface is free of riling?	Annually		
Geo-web/grid is not exposed?	Annually		
Gravel cover is sufficient, and the road has maintained the proper grade?	Annually		
Erosion and/or sedimentation observed?	Annually		
Free of trash, debris, and pollutants?	Annually		
Vegetation is healthy and sufficient ground cover is observed?	Annually		
Vegetation is mowed to a minimum height of 4 inches?	Annually		
		rvious Access I	Roads
Road surface is free of riling?	Annually		
Geo-web/grid is not exposed?	Annually		
Gravel cover is sufficient, and the road has maintained the proper grade?	Annually		
Erosion and/or sedimentation observed?	Annually		
Free of trash, debris, and pollutants?	Annually		
Vegetation is healthy and sufficient ground cover is observed?	Annually		
Vegetation is mowed to a minimum height of 4 inches?	Annually		

Appendix J – Pre-Development Modeling

- Pre-Development Subcatchment Map -
- Pre-Development HydroCAD Model -


Appendix J – Pre-Development Subcatchment Map

Appendix J – Pre-Development HydroCAD Model

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
 1	1-Year	NRCC 24-hr	С	Default	24.00	1	2.61	2
2	10-Year	NRCC 24-hr	С	Default	24.00	1	4.67	2
3	100-Year	NRCC 24-hr	С	Default	24.00	1	8.20	2

Rainfall Events Listing

Area Listing (selected nodes)

CN	Description
	(subcatchment-numbers)
61	>75% Grass cover, Good, HSG B (Pre-1S, Pre-2S, Pre-3S)
80	>75% Grass cover, Good, HSG D (Pre-3S)
48	Brush, Good, HSG B (Pre-1S)
96	Compacted Gravel (Pre-1S, Pre-2S, Pre-3S)
58	Meadow, non-grazed, HSG B (Pre-1S, Pre-2S, Pre-3S)
98	Pavement (Pre-2S, Pre-3S)
60	Woods, Fair, HSG B (Pre-1S, Pre-2S, Pre-3S)
55	Woods, Good, HSG B (Pre-1S)
77	Woods, Good, HSG D (Pre-1S, Pre-3S)
	61 80 48 96 58 98 60 55

Soil Listing (selected nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
1,338,629	HSG B	Pre-1S, Pre-2S, Pre-3S
0	HSG C	
32,355	HSG D	Pre-1S, Pre-3S
39,485	Other	Pre-1S, Pre-2S, Pre-3S

Old Myers Solar - Hydrologic Analysis Prepared by TRC HydroCAD® 10.10-4a s/n 01402 © 2020 HydroCAD Software Solutions LLC

Printed 2023-04-28 Page 5

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Su
 (sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Nu
 0	21,403	0	517	0	21,920	>75% Grass	
						cover, Good	
0	128,701	0	0	0	128,701	Brush, Good	
0	0	0	0	20,187	20,187	Compacted	
						Gravel	
0	493,658	0	0	0	493,658	Meadow,	
						non-grazed	
0	0	0	0	19,298	19,298	Pavement	
0	473,292	0	0	0	473,292	Woods, Fair	
0	221,575	0	31,838	0	253,413	Woods, Good	

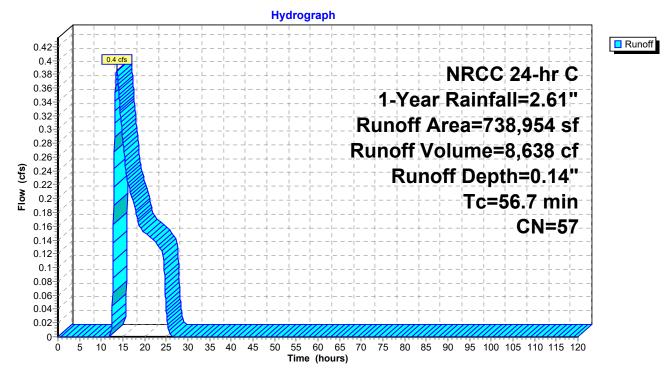
Ground Covers (selected nodes)

Time span=0.00-120.00 hrs, dt=0.05 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPre-1S:	Runoff Area=738,954 sf 0.00% Impervious Runoff Depth=0.14" Tc=56.7 min CN=57 Runoff=0.4 cfs 8,638 cf
SubcatchmentPre-2S:	Runoff Area=456,333 sf 0.59% Impervious Runoff Depth=0.21" Tc=36.9 min CN=60 Runoff=0.5 cfs 7,803 cf
SubcatchmentPre-3S:	Runoff Area=215,182 sf 7.72% Impervious Runoff Depth=0.31" Tc=37.9 min CN=64 Runoff=0.5 cfs 5,562 cf

Summary for Subcatchment Pre-1S:

Runoff = 0.4 cfs @ 13.58 hrs, Volume= 8,638 cf, Depth= 0.14"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 1-Year Rainfall=2.61"

	Area (sf)	CN	Description
*	3,859	96	Compacted Gravel
	31,148	77	Woods, Good, HSG D
	1,643	61	>75% Grass cover, Good, HSG B
	238,090	60	Woods, Fair, HSG B
	113,938	58	Meadow, non-grazed, HSG B
	221,575	55	Woods, Good, HSG B
	128,701	48	Brush, Good, HSG B
	738,954	57	Weighted Average
	738,954		100.00% Pervious Area
(n	Tc Length nin) (feet)	Sloı (ft/	

56.7

Direct Entry, See Tc Calculation Sheets

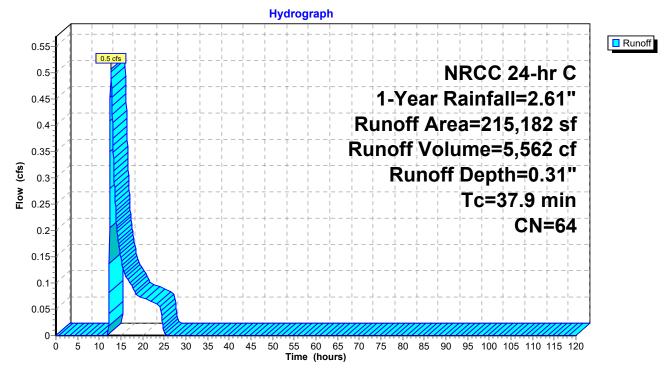
Subcatchment Pre-1S:

Summary for Subcatchment Pre-2S:

Runoff = 0.5 cfs @ 12.84 hrs, Volume= 7,803 cf, Depth= 0.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 1-Year Rainfall=2.61"

	Ar	rea (sf)	CN	D	escr	iptic	on																	
*		2,688	98		aver																			
*		8,482	96		omp																			
	1;	30,905 623	60 61		/ood						- d	ue												
	3	623 13,635	58		75% lead								GB											
		56,333	60		/eigh					u, i	100													
		53,645	00		9.41					еа														
	•	2,688		-	.59%																			
	_																							
1.	Tc	Length		pe		ocit		Cap			De	scri	ptic	n										
	nin)	(feet)	(1	t/ft)	(π/	/sec	;)		(cf	s)	D:	4	-	4	0.0					41.0	- 0	.	- 1 -	
	36.9										DIr	ect	EU	try,	, 36	e i	сu		uia	τιο	n 5	ne	ets	
								Sı	Jpc	ato	:hn	ner	nt F	P re	-28	S:								
										drog														
						1		1		<u></u>		• !		 		 					1			_
	0.55									 	 	 	 	 	i.		 					Ì	1	Runoff
	0.5-	/ - <mark> 0.</mark> /	5 cfs	· _ 4	- ⊢ I	- 	-! !	-1		+ 	∟ I I	 	. 	 	+ 	+ 	¦ N			<u>י</u>	Å_I	-⊥ h'ı	· C	_
	-	,							і т — —	і т – –	 	i 		, ,	; 	і т – –					· +			_
	0.45				 	 			 	 	 	 	 	1-	Υe	a	' R	ai	nfa	all:	=2	.6	1"	_
	0.4			Ì		i i		i I	i I	i I	 	 	R	un	of	fΑ	re	a=	=45	56,	33	3	sf	
	0.35			· - + -				 !	<u> </u>	+ !	 !		Rι	ind	off	V	οlι	im	le=	:7.	80	3	Cf	-
cfs)	0.3) 		· - + -	- +	-	- 		+	+	 ⊢ – – 	 										_ i.	1"	-
Flow (cfs)	. 0.3				- <u> </u>						 	 		 		+	/	1	1.	1	1	1	1	_
Ę	0.25			i i	i I	i I	i I	i I	i I	i I	i I	 	i I	i I	i I	i I	i I		с=.	1	1		nin	
	0.2			- + -	 	- 	- 	-1 	+ 	+ 	 	 	 	1 · 	+ 	+	- 	- 	- 		ÇN		60	_
	0.15-	/		- + -	- <u> </u>		- ¹		<u> </u>	<u> </u>	L	 	!	<u> </u>	<u>+</u>	<u>+</u>	. 		-!		· <u>+</u>	- <u> </u> 	l	-
	0.13	,		\square	, 		-i		- - 	; † – –		 		, 	; +	; +	- 	-	-i	 	+	 	·	_
	0.1					 			1	 	 	 	1	 	1	 	1	1	 _ _	1	1	1	 	_
	0.05						1	1		1	 I I	 	1		 	 		1						
	0-				1111																			-
	0-	0 5 10	15 2	0 25	30	35	40	45	50	55	60	65	70	75			90						15 120	


Summary for Subcatchment Pre-3S:

Runoff = 0.5 cfs @ 12.70 hrs, Volume= 5,562 cf, Depth= 0.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 1-Year Rainfall=2.61"

	Area (sf)	CN	Description								
*	16,610	98	Pavement								
*	7,846	96	Compacted (ompacted Gravel							
	517	80	>75% Grass	75% Grass cover, Good, HSG D							
	690	77	Woods, Goo	loods, Good, HSG D							
	19,137	61	>75% Grass	75% Grass cover, Good, HSG B							
	104,297	60	Woods, Fair,	/oods, Fair, HSG B							
	66,085	58	Meadow, nor	n-grazed,	HSG B						
	215,182	64	Weighted Av	erage							
	198,572		92.28% Perv	ious Area							
	16,610		7.72% Imper	vious Area	а						
	Tc Length	Slop	be Velocity	Capacity	Description						
(m	in) (feet)	(ft/1	ft) (ft/sec)	(cfs)							
3	7.9				Direct Entry, See Tc Calculation Sheets						
					-						

Subcatchment Pre-3S:

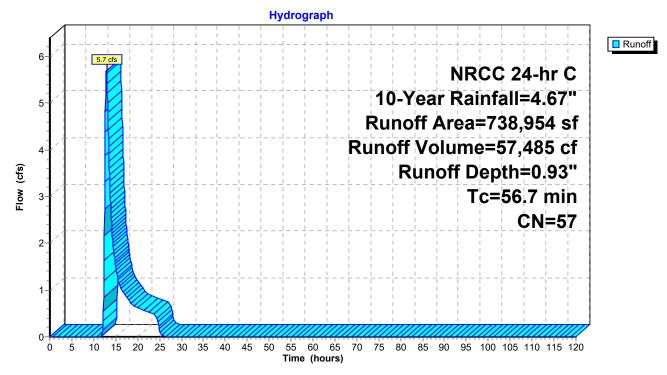
Time span=0.00-120.00 hrs, dt=0.05 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPre-1S:	Runoff Area=738,954 sf 0.00% Impervious Runoff Depth=0.93" Tc=56.7 min CN=57 Runoff=5.7 cfs 57,485 cf
SubcatchmentPre-2S:	Runoff Area=456,333 sf 0.59% Impervious Runoff Depth=1.11" Tc=36.9 min CN=60 Runoff=5.8 cfs 42,323 cf
SubcatchmentPre-3S:	Runoff Area=215,182 sf 7.72% Impervious Runoff Depth=1.37" Tc=37.9 min CN=64 Runoff=3.5 cfs 24,575 cf

Summary for Subcatchment Pre-1S:

Runoff 5.7 cfs @ 12.89 hrs, Volume= 57,485 cf, Depth= 0.93" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.67"


	Area (sf)	CN	Description
*	3,859	96	Compacted Gravel
	31,148	77	Woods, Good, HSG D
	1,643	61	>75% Grass cover, Good, HSG B
	238,090	60	Woods, Fair, HSG B
	113,938	58	Meadow, non-grazed, HSG B
	221,575	55	Woods, Good, HSG B
	128,701	48	Brush, Good, HSG B
	738,954	57	Weighted Average
	738,954		100.00% Pervious Area
		<u> </u>	
	Tc Length	Slo	
	(min) (feet)	(ft/	ft) (ft/sec) (cfs)

(min) (feet) (ft/ft) (ft/sec)

56.7

Direct Entry, See Tc Calculation Sheets

Subcatchment Pre-1S:

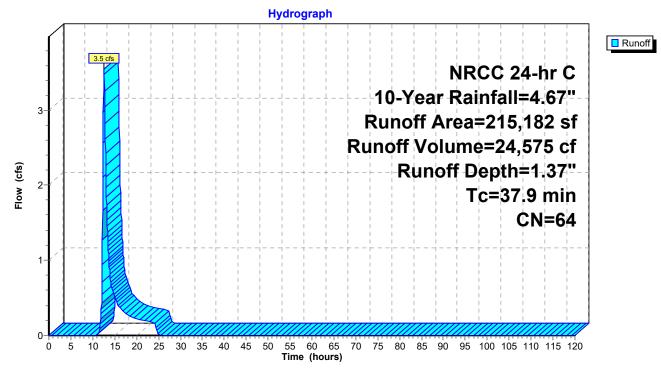
Summary for Subcatchment Pre-2S:

Runoff = 5.8 cfs @ 12.57 hrs, Volume= 42,323 cf, Depth= 1.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.67"

	А	rea (sf)	CN [Description								
*		2,688		Pavement								
*		8,482		Compacted	Gravel							
		30,905		Voods, Fai								
		623				ood, HSG E	5					
	3	313,635	58 N	leadow, no	on-grazed,	HSG B						
		156,333		Veighted A								
	2	153,645			rvious Area							
		2,688	().59% Impe	ervious Are	а						
	Tc	Length	Slope	Velocity	Capacity	Descriptio	on					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Dire of Fr		- T- C			Nh o o f o	
	36.9					Direct Er	try, Se	eicu		ation S	neets	
					Subcat	tchment	Pre-2S	5:				
					Hydro	ograph						
]
	-			-++		$\begin{array}{c} 1 & 1 & 1 \\ + & - & + & - & + & - & - \\ 1 & 1 & 1 & 1 & 1 \\ \end{array}$			+ +	-	· - ·	Runoff
	6-	5.8 cl							NRC	C 24-	hr C	
	-			-++		· · · · · · · · · · · · · · · · · · ·	10-Y	oor (Daint	Fall-/	1-67"-	-
	5-						i i i	i i	i i	i i	i i	
							Runo	ff Ar	ea=4	56,3	33 sf	
	4-	,		-++		RI	inoff	Volu	me=	42.3	23 cf	-
	· .								1 1	· · ·		
	Flow (cfs)						R	ΙΟΠ			1.11"	
	NO 3-								Tc=	=36.9	min	
								I I	I I I I	i Cl	N=60	
	_			- + +					++			-
	2-						. , , , 	1				
	-										 	
	1-											

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Time (hours)


Summary for Subcatchment Pre-3S:

Runoff = 3.5 cfs @ 12.57 hrs, Volume= 24,575 cf, Depth= 1.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.67"

	Area (sf)	CN	Description							
*	16,610	98	Pavement							
*	7,846	96	Compacted Gravel							
	517	80	75% Grass cover, Good, HSG D							
	690	77	/oods, Good, HSG D							
	19,137	61	>75% Grass cover, Good, HSG B							
	104,297	60	Woods, Fair, HSG B							
	66,085	58	Meadow, non-grazed, HSG B							
	215,182	64	Weighted Average							
	198,572		92.28% Pervious Area							
	16,610		7.72% Impervious Area							
(m	Tc Length nin) (feet)	Slop (ft/f								
3	7.9		Direct Entry, See Tc Calculation Sheets							
	, , ,	(11/1								

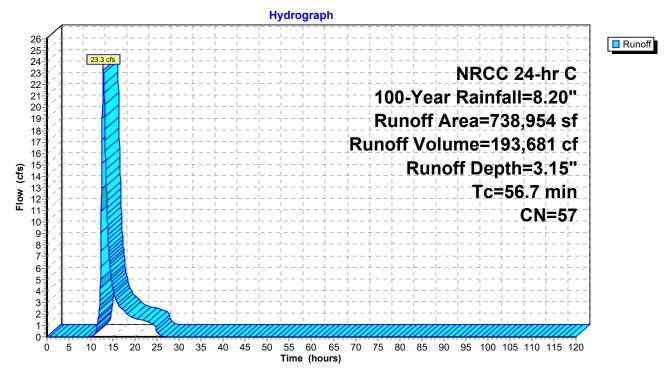
Subcatchment Pre-3S:

Time span=0.00-120.00 hrs, dt=0.05 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentPre-1S:	Runoff Area=738,954 sf 0.00% Impervious Runoff Depth=3.15" Tc=56.7 min CN=57 Runoff=23.3 cfs 193,681 cf
SubcatchmentPre-2S:	Runoff Area=456,333 sf 0.59% Impervious Runoff Depth=3.48" Tc=36.9 min CN=60 Runoff=20.8 cfs 132,491 cf
SubcatchmentPre-3S:	Runoff Area=215,182 sf 7.72% Impervious Runoff Depth=3.94" Tc=37.9 min CN=64 Runoff=11.0 cfs 70,676 cf

Summary for Subcatchment Pre-1S:

Runoff 23.3 cfs @ 12.80 hrs, Volume= 193,681 cf, Depth= 3.15" =


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.20"

	Area (sf)	CN	Description
*	3,859	96	Compacted Gravel
	31,148	77	Woods, Good, HSG D
	1,643	61	>75% Grass cover, Good, HSG B
	238,090	60	Woods, Fair, HSG B
	113,938	58	Meadow, non-grazed, HSG B
	221,575	55	Woods, Good, HSG B
	128,701	48	Brush, Good, HSG B
	738,954	57	Weighted Average
	738,954		100.00% Pervious Area
(Tc Length (min) (feet)	Sloj (ft/	

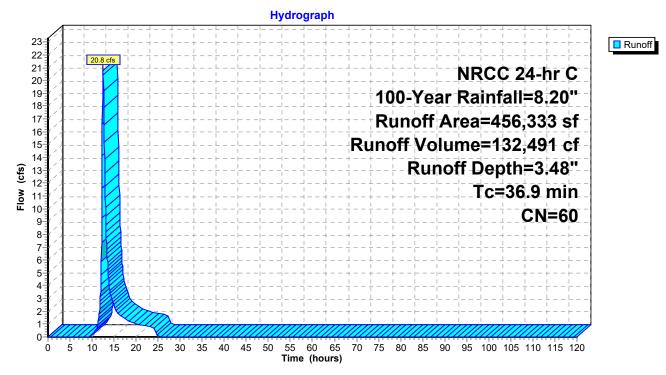
_		_	
	56	7	
	\mathbf{U}	. /	

Direct Entry, See Tc Calculation Sheets

Subcatchment Pre-1S:

Summary for Subcatchment Pre-2S:

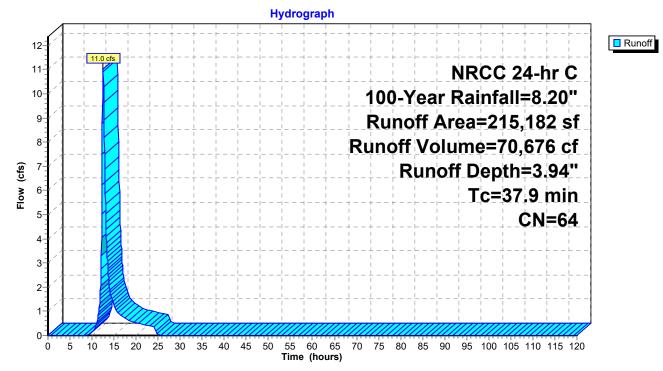
Runoff = 20.8 cfs @ 12.52 hrs, Volume= 132,491 cf, Depth= 3.48"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.20"

	Area (sf)	CN	Description						
*	2,688	98	Pavement						
*	8,482	96	Compacted Gravel						
	130,905	60	Woods, Fair, HSG B						
	623	61	>75% Grass cover, Good, HSG B						
	313,635	58	Meadow, non-grazed, HSG B						
	456,333	60	Weighted Average						
	453,645		99.41% Pervious Area						
	2,688	0.59% Impervious Area							
(n	Tc Length nin) (feet)	Slop (ft/							

Direct Entry, See Tc Calculation Sheets

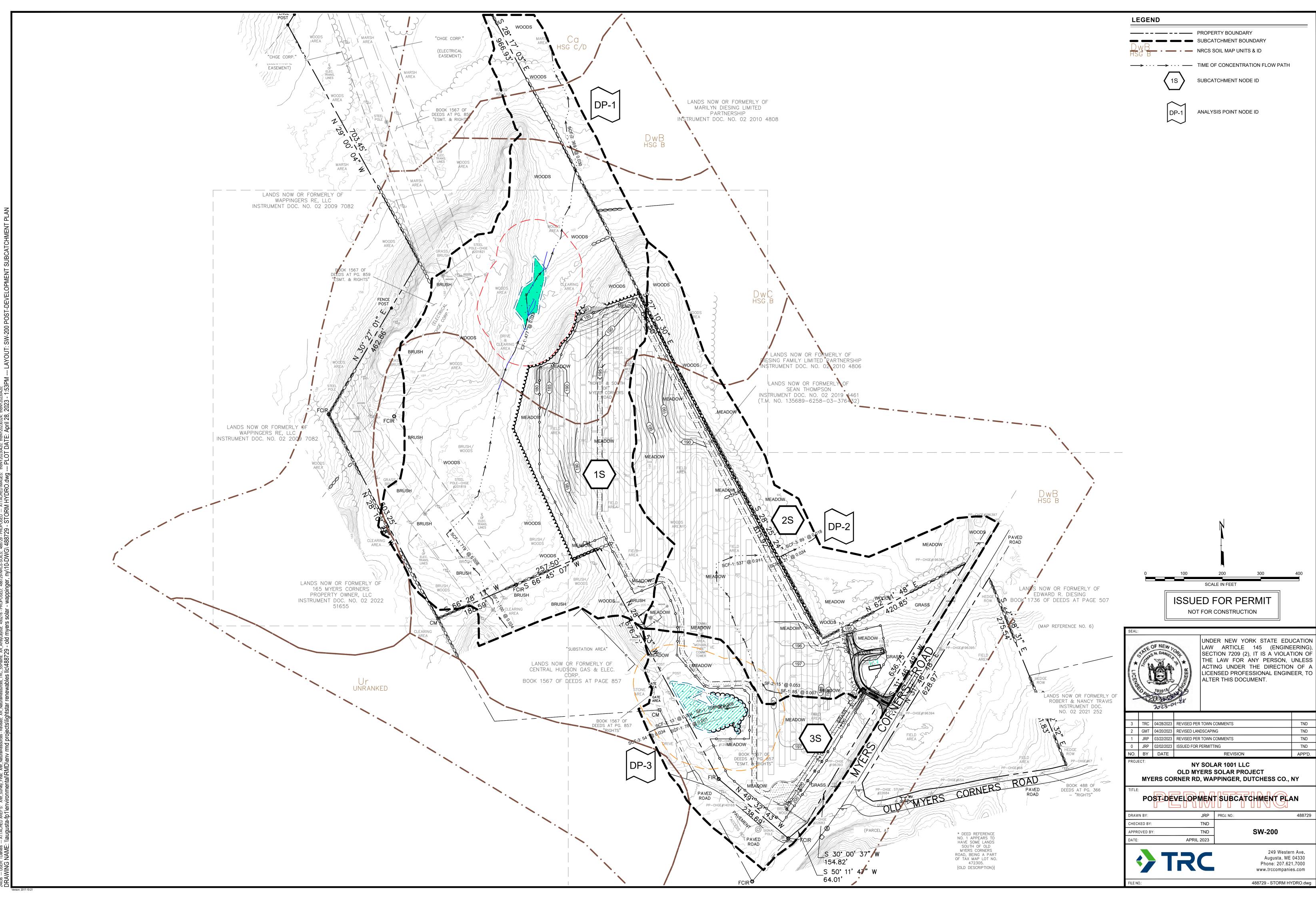
Subcatchment Pre-2S:


Summary for Subcatchment Pre-3S:

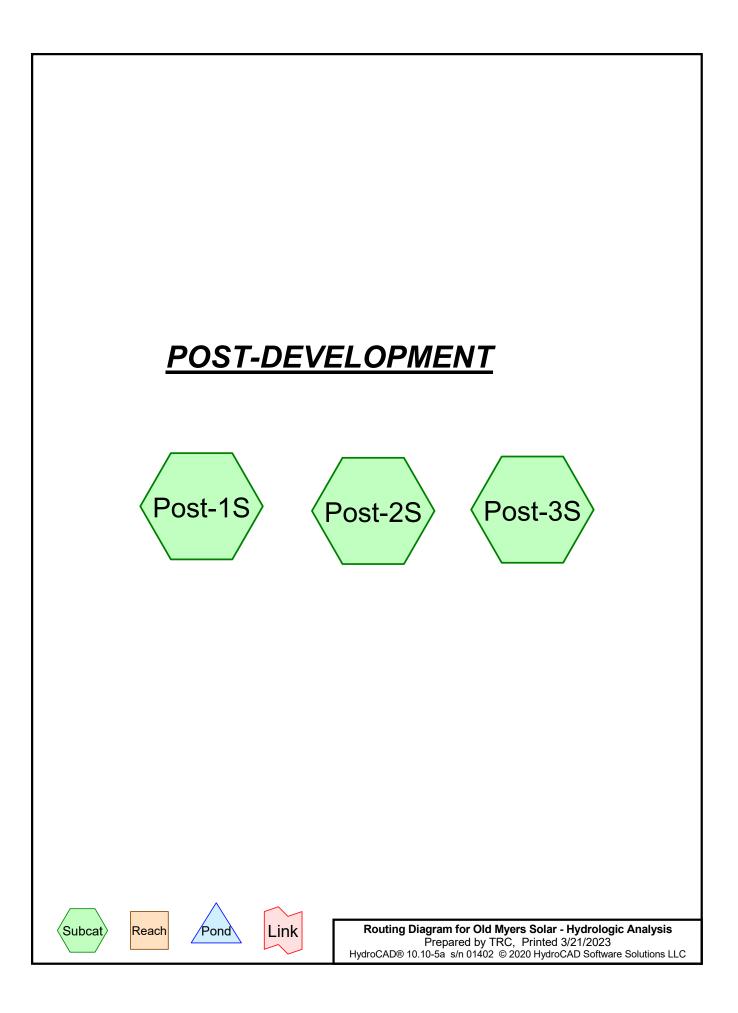
Runoff = 11.0 cfs @ 12.53 hrs, Volume= 70,676 cf, Depth= 3.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.20"

	Area (sf)	CN	Description							
*	16,610	98	Pavement	Pavement						
*	7,846	96	Compacted	Compacted Gravel						
	517	80	>75% Gras	75% Grass cover, Good, HSG D						
	690	77	Woods, Go	Woods, Good, HSG D						
	19,137	61	>75% Gras	>75% Grass cover, Good, HSG B						
	104,297	60	Woods, Fai	Voods, Fair, HSG B						
	66,085	58	Meadow, n	Meadow, non-grazed, HSG B						
	215,182 64 Weighted Average									
	198,572									
	16,610 7.72% Impervious Area									
	Tc Length	Slop	,	Capacity	Description					
(m	nin) (feet)	(ft/	ft) (ft/sec)	(cfs)						
3	7.9				Direct Entry, See Tc Calculation Sheets					


Subcatchment Pre-3S:

Appendix K – Post-Development Modeling


- Post-Development Subcatchment Map -
- Post-Development HydroCAD Model -

Appendix K – Post-Development Subcatchment Map

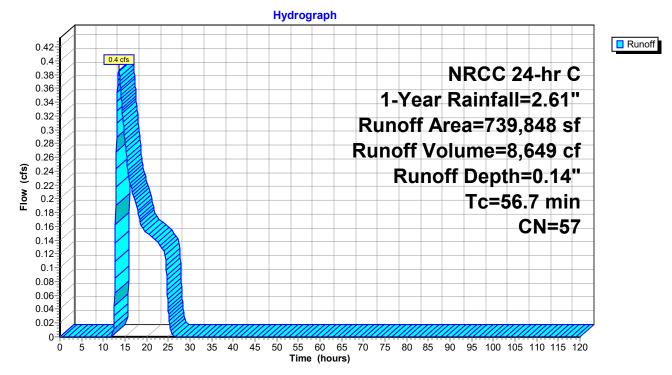
Appendix K – Post-Development HydroCAD Model

E	vent#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	1-Year	NRCC 24-hr	С	Default	24.00	1	2.61	2
	2	10-Year	NRCC 24-hr	С	Default	24.00	1	4.67	2
	3	100-Year	NRCC 24-hr	С	Default	24.00	1	8.20	2

Rainfall Events Listing

Summary for Subcatchment Post-1S:

Runoff = 0.4 cfs @ 13.58 hrs, Volume= 8,649 cf, Depth= 0.14"

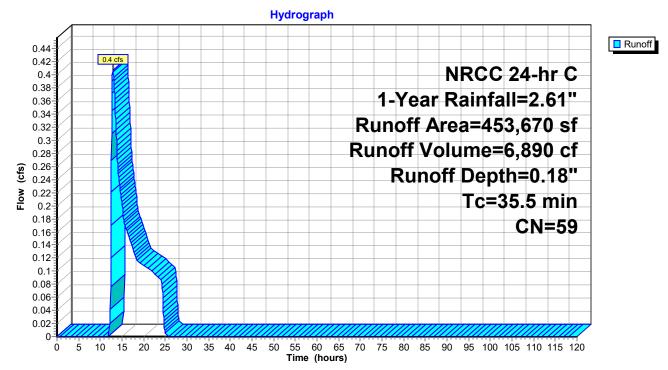

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 1-Year Rainfall=2.61"

	Area (sf)	CN	Description
*	0	96	Compacted Gravel
	31,148	77	Woods, Good, HSG D
	1,643	61	>75% Grass cover, Good, HSG B
	190,664	60	Woods, Fair, HSG B
	178,866	58	Meadow, non-grazed, HSG B
	221,574	55	Woods, Good, HSG B
	115,953	48	Brush, Good, HSG B
	739,848	57	Weighted Average
	739,848		100.00% Pervious Area
	Tc Length	Slop	
(m	iin) (feet)	(ft/	ft) (ft/sec) (cfs)

56.7

Direct Entry, See Tc Calculation Sheets

Subcatchment Post-1S:

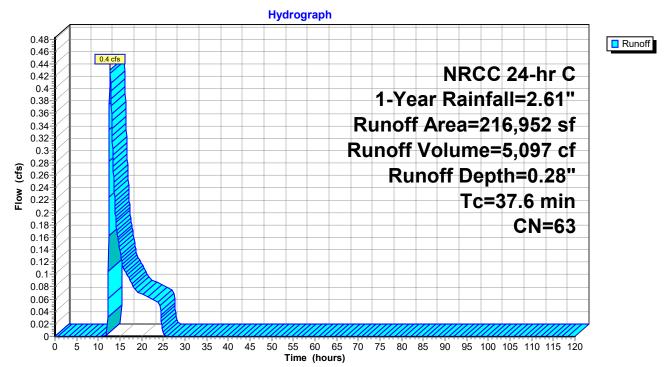

Summary for Subcatchment Post-2S:

Runoff = 0.4 cfs @ 12.91 hrs, Volume= 6,890 cf, Depth= 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 1-Year Rainfall=2.61"

	Area (sf)	CN	Description						
*	3,751	98	Pavement	Pavement					
*	160	98	Concrete						
*	4,010	96	Compacted	Compacted Gravel					
	623	61	>75% Grass	•75 ['] , Grass cover, Good, HSG B					
	86,342	60	Woods, Fai	r, HSG B					
	358,784	58	Meadow, no	on-grazed,	HSG B				
	0	55	Woods, Goo	od, HSG B					
	453,670	59	Weighted A	verage					
	449,759		99.14% Per	vious Area					
3,911 0.86% Impervious Area					а				
(m	Tc Length hin) (feet)	Slop (ft/1		Capacity (cfs)	Description				
3	5.5				Direct Entry, See Tc Calculation Sheets				

Subcatchment Post-2S:


Summary for Subcatchment Post-3S:

Runoff = 0.4 cfs @ 12.72 hrs, Volume= 5,097 cf, Depth= 0.28"

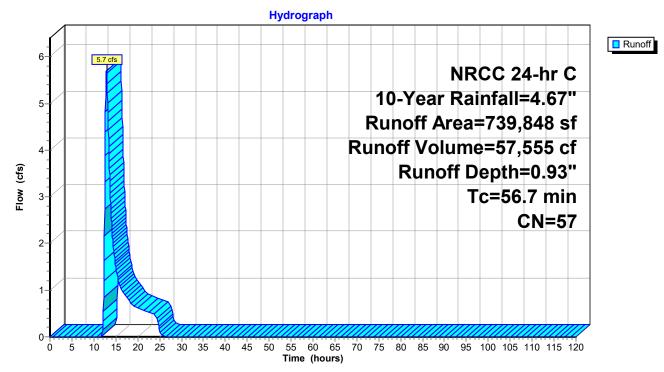
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 1-Year Rainfall=2.61"

	Ai	rea (sf)	CN	Description							
*		16,651	98	Pavement	avement						
*		6,872	96	Compacted	ompacted Gravel						
		517	80	>75% Gras	s cover, Go	bod, HSG D					
		690	77	Woods, Go	Voods, Good, HSG D						
		19,137	61	>75% Gras	s cover, Go	ood, HSG B					
		43,661	60	Woods, Fai	r, HSG B						
	1	29,424	58	Meadow, no	on-grazed,	HSG B					
		0	55	Woods, Go	od, HSG B						
	2	16,952	63	Weighted A	verage						
	2	00,301		92.33% Pe	vious Area						
		16,651		7.67% Impe	ervious Are	а					
	Tc	Length	Slop	e Velocity	Capacity	Description					
(ímin)	(feet)	(ft/f	t) (ft/sec)	(cfs)						
	37.6					Direct Entry, See Tc Calculation Sheets					
						-					

Subcatchment Post-3S:

Summary for Subcatchment Post-1S:

Runoff 5.7 cfs @ 12.89 hrs, Volume= 57,555 cf, Depth= 0.93" =

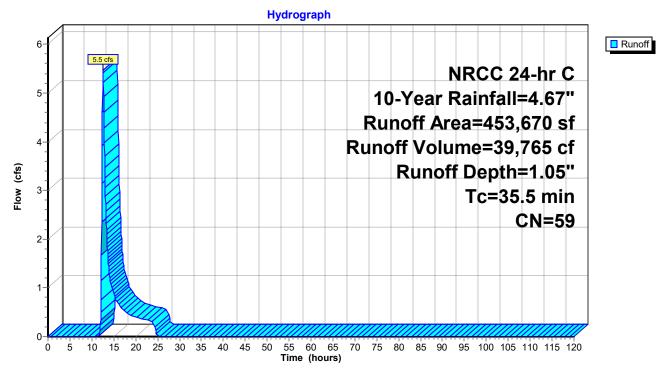

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.67"

	Area (sf)	CN	Description
*	0	96	Compacted Gravel
	31,148	77	Woods, Good, HSG D
	1,643	61	>75% Grass cover, Good, HSG B
	190,664	60	Woods, Fair, HSG B
	178,866	58	Meadow, non-grazed, HSG B
	221,574	55	Woods, Good, HSG B
	115,953	48	Brush, Good, HSG B
	739,848	57	Weighted Average
	739,848		100.00% Pervious Area
	Tc Length	Slop	
(m	in) (feet)	(ft/	ft) (ft/sec) (cfs)

56.7

Direct Entry, See Tc Calculation Sheets

Subcatchment Post-1S:

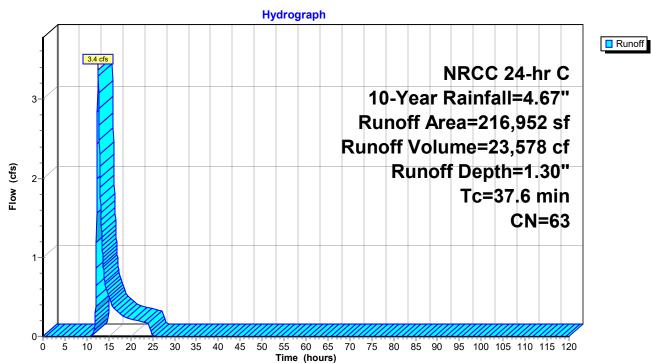

Summary for Subcatchment Post-2S:

Runoff = 5.5 cfs @ 12.56 hrs, Volume= 39,765 cf, Depth= 1.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.67"

	Area (sf)	CN	Description						
*	3,751	98	Pavement						
*	160	98	Concrete						
*	4,010	96	Compacted Gravel						
	623	61	>75% Grass cover, Good, HSG B						
	86,342	42 60 Woods, Fair, HSG B							
	358,784	58	Meadow, non-grazed, HSG B						
	0	55	Woods, Good, HSG B						
	453,670	59	Weighted Average						
	449,759		99.14% Pervious Area						
	3,911		0.86% Impervious Area						
(m	Tc Length hin) (feet)	Slop (ft/t							
3	5.5		Direct Entry, See Tc Calculation Sheets						

Subcatchment Post-2S:


Summary for Subcatchment Post-3S:

Runoff = 3.4 cfs @ 12.56 hrs, Volume= 23,578 cf, Depth= 1.30"

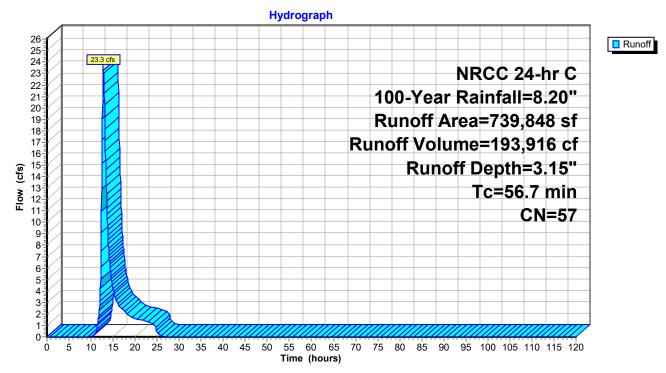
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.67"

	Area (sf)	CN	Description
*	16,651	98	Pavement
*	6,872	96	Compacted Gravel
	517	80	>75% Grass cover, Good, HSG D
	690	77	Woods, Good, HSG D
	19,137	61	>75% Grass cover, Good, HSG B
	43,661	60	Woods, Fair, HSG B
	129,424	58	Meadow, non-grazed, HSG B
	0	55	Woods, Good, HSG B
	216,952	63	Weighted Average
	200,301		92.33% Pervious Area
	16,651		7.67% Impervious Area
	Tc Length	Slop	pe Velocity Capacity Description
(m	in) (feet)	(ft/	ft) (ft/sec) (cfs)
37	' .6		Direct Entry, See Tc Calculation Sheets
	-		······································

Subcatchment Post-3S:

Summary for Subcatchment Post-1S:

23.3 cfs @ 12.80 hrs, Volume= Runoff 193,916 cf, Depth= 3.15" =

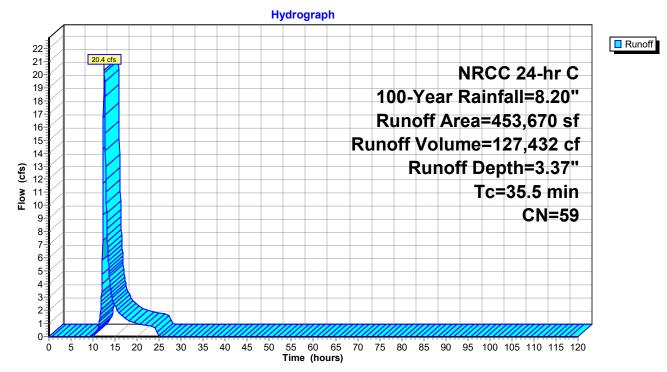

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.20"

	Area (sf)	CN	Description	
*	0	96	Compacted Gravel	
	31,148	77	Woods, Good, HSG D	
	1,643	61	>75% Grass cover, Good, HSG B	
	190,664	60	Woods, Fair, HSG B	
	178,866	58	Meadow, non-grazed, HSG B	
	221,574	55	Woods, Good, HSG B	
	115,953	48	Brush, Good, HSG B	
	739,848	57	Weighted Average	
739,848 100.00% Pervious Area				
(m	Tc Length iin) (feet)	Slop (ft/		

56.7

Direct Entry, See Tc Calculation Sheets

Subcatchment Post-1S:

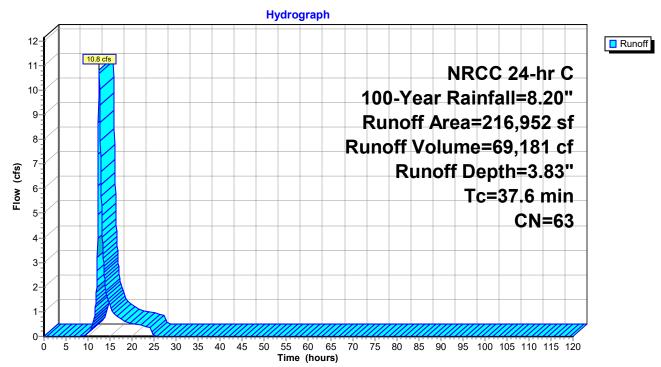


Runoff 20.4 cfs @ 12.51 hrs, Volume= 127,432 cf, Depth= 3.37" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.20"

	Area (sf)	CN	Description							
*	3,751	98	Pavement	avement						
*	160	98	Concrete							
*	4,010	96	Compacted Gravel							
	623	61	>75% Grass cover, Good, HSG B							
	86,342	60	Woods, Fair, HSG B							
	358,784	58	Meadow, non-grazed, HSG B							
	0	55	Woods, Good, HSG B							
	453,670	59	Weighted Average							
	449,759		99.14% Pervious Area							
	3,911		0.86% Impervious Area							
(n	Tc Length nin) (feet)	Slop (ft/f								
3	5.5		Direct Entry,	See Tc Calculation Sheets						

Subcatchment Post-2S:


Summary for Subcatchment Post-3S:

Runoff 10.8 cfs @ 12.53 hrs, Volume= = 69,181 cf, Depth= 3.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=8.20"

	Area (sf)	CN	Description							
*	16,651	98	Pavement	avement						
*	6,872	96	Compacted	ompacted Gravel						
	517	80	>75% Gras	75% Grass cover, Good, HSG D						
	690	77	Woods, Go	/oods, Good, HSG D						
	19,137	61	>75% Gras	s cover, Go	bod, HSG B					
	43,661	60	Woods, Fai	r, HSG B						
	129,424	58	Meadow, no	on-grazed,	HSG B					
	0	55	Woods, Go	od, HSG B						
	216,952	63	Weighted A	verage						
	200,301		92.33% Per	vious Area						
	16,651		7.67% Impe	ervious Area	a					
	Tc Length	Slop	be Velocity	Capacity	Description					
(n	nin) (feet)	(ft/	ft) (ft/sec)	(cfs)	·					
3	37.6				Direct Entry, See Tc Calculation Sheets					

Subcatchment Post-3S:

Appendix L – Stormwater Design Calculation

<u>PRE- AND POST-DEVELOPMENT LAND USE COMPARISON TABLE</u> OVERALL SITE WATERSHED

PRE-DEVELOPMENT CO	NDITIONS		POST-DEVELOPMENT C			
Cover Description	CN	Area (Ac.)	Cover Description	CN	Area (Ac.)	NET CHANGE (Ac.)
Pavement	98	0.443	Pavement	98	0.468	0.025
Concrete	98	0.000	Concrete	98	0.004	0.004
Compacted Gravel	96	0.464	Compacted Gravel	96	0.250	-0.214
>75% Grass cover, Good, HSG D	80	0.012	>75% Grass cover, Good, HSG D	80	0.012	0.000
Woods, Good, HSG D	77	0.731	Woods, Good, HSG D	77	0.731	0.000
>75% Grass cover, Good, HSG B	61	0.491	>75% Grass cover, Good, HSG B	61	0.491	0.000
Woods, Fair, HSG B	60	10.864	Woods, Fair, HSG B	60	7.361	-3.503
Meadow, non-grazed, HSG B	58	11.333	Meadow, non-grazed, HSG B	58	15.314	3.981
Woods, Good, HSG B	55	5.087	Woods, Good, HSG B	55	5.087	0.000
Brush, Good, HSG B	48	2.955	Brush, Good, HSG B	48	2.662	-0.293
Total:	58.9	32.380	Total	58.5	32.380	0.000

Notes: Soils identified by published NRCS soils data as having dual hydrologic soil groups (i.e., HSG

PRE- AND POST-DEVELOPMENT LAND USE COMPARISON TABLE

Subcatchment ID: 1S

PRE-DEVELOPMENT CO		POST-DEVELOPMENT CONDITIONS				
Cover Description	СN	Area (Ac.)	Cover Description	CN	Area (Ac.)	NET CHANGE (Ac.)
Compacted Gravel	96	0.089	Compacted Gravel	96	0.000	-0.089
Woods, Good, HSG D	77	0.715	Woods, Good, HSG D	77	0.715	0.000
>75% Grass cover, Good, HSG B	61	0.038	>75% Grass cover, Good, HSG B	61	0.038	0.000
Woods, Fair, HSG B	60	5.465	Woods, Fair, HSG B	60	4.377	-1.088
Meadow, non-grazed, HSG B	58	2.616	Meadow, non-grazed, HSG B	58	4.106	1.490
Woods, Good, HSG B	55	5.087	Woods, Good, HSG B	55	5.087	0.000
Brush, Good, HSG B	48	2.955	Brush, Good, HSG B	48	2.662	-0.293
Total:	57.0			56.9	16.985	0.020

Notes: Soils identified by published NRCS soils data as having dual hydrologic soil groups (i.e., HSG

PRE- AND POST-DEVELOPMENT LAND USE COMPARISON TABLE

Subcatchment ID: 2S

PRE-DEVELOPMENT CO		POST-DEVELOPMENT CONDITIONS				
Cover Description	СN	Area (Ac.)	Cover Description	СN	Area (Ac.)	NET CHANGE (Ac.)
Pavement	98	0.062	Pavement	98	0.086	0.024
Concrete	98	0.000	Concrete	98	0.004	0.004
Compacted Gravel	96	0.195	Compacted Gravel	96	0.092	-0.103
>75% Grass cover, Good, HSG B	61	0.014	>75% Grass cover, Good, HSG B	61	0.014	0.000
Woods, Fair, HSG B	60	3.005	Woods, Fair, HSG B	60	1.982	-1.023
Meadow, non-grazed, HSG B	58	7.200	Meadow, non-grazed, HSG B	58	8.237	1.037
Woods, Good, HSG B	55	0.000	Woods, Good, HSG B	55	0.000	0.000
Total:	59.5			59.1	10.415	-0.061

Notes: Soils identified by published NRCS soils data as having dual hydrologic soil groups (i.e., HSG

PRE- AND POST-DEVELOPMENT LAND USE COMPARISON TABLE

Subcatchment ID: 3S

PRE-DEVELOPMENT CO	PRE-DEVELOPMENT CONDITIONS			POST-DEVELOPMENT CONDITIONS		
Cover Description	СN	Area (Ac.)	Cover Description	CN	Area (Ac.)	NET CHANGE (Ac.)
Pavement	98	0.381	Pavement	98	0.382	0.001
Compacted Gravel	96	0.180	Compacted Gravel	96	0.158	-0.022
>75% Grass cover, Good, HSG D	80	0.012	>75% Grass cover, Good, HSG D	80	0.012	0.000
Woods, Good, HSG D	77	0.016	Woods, Good, HSG D	77	0.016	0.000
>75% Grass cover, Good, HSG B	61	0.439	>75% Grass cover, Good, HSG B	61	0.439	0.000
Woods, Fair, HSG B	60	2.394	Woods, Fair, HSG B	60	1.002	-1.392
Meadow, non-grazed, HSG B	58	1.517	Meadow, non-grazed, HSG B	58	2.971	1.454
Total:	63.8	4.939	Total 63.1 4.980			0.041

Notes: Soils identified by published NRCS soils data as having dual hydrologic soil groups (i.e., HSG

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to post-

	•	ime)?				
Design Point:						
P=	1.40	inch				
		Breakdow	vn of Subcatchmei	nts		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description
1	0.03	0.03	100%	0.95	165	Infiltration Trench
2						
3						
4						
5						
6						
7						
8						
9						
10						
Subtotal (1-30)	0.03	0.03	100%	0.95	165	Subtotal 1
Total	0.03	0.03	100%	0.95	165	Initial WQv

Identify Runoff Reduction Techniques By Area								
Technique	Total Contributing Area	Contributing Impervious Area	Notes					
	(Acre)	(Acre)						
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf					
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet					
Filter Strips	0.00	0.00						
Tree Planting	0.00	0.00	Up to 100 sf directly connected impervious area may be subtracted per tree					
Total	0.00	0.00						

Recalcul							
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ³)	•	
"< <initial td="" wqv"<=""><td>0.03</td><td>0.03</td><td>100%</td><td>0.95</td><td>165</td><td></td><td></td></initial>	0.03	0.03	100%	0.95	165		
Subtract Area	0.00	0.00					
WQv adjusted after Area Reductions	0.03	0.03	100%	0.95	165		
Disconnection of Rooftops		0.00					
Adjusted WQv after Area Reduction and Rooftop Disconnect	0.03	0.03	100%	0.95	165	0.00	af
WQv reduced by Area Reduction techniques					0	0.00	af

Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

		Addition	al Subcatchment	s		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
Subtotal	0.00	0.00			0	Subtotal

Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

CatchmentTotal Area (Acres)Impervious CoverPercent Impervious $\%$ Runoff Coefficient RV WQV $(t^{1/3})$ Description10.030.031.000.95164.70Infiltration2 </th <th colspan="9">All Subcatchments</th>	All Subcatchments								
10.030.031.000.95164.70Infiltration2IIIIIII3IIIIIII3IIIIIIII4IIIIIIII5IIIIIIII6IIIIIIII7IIIIIIII9IIIIIIII9IIIIIIII10IIIIIIII11IIIIIIII12IIIIIIII13IIIIIIII14IIIIIIII15IIIIIIII16IIIIIIII19IIIIIIII19IIIIIIII11IIIIIIII13IIIII	Catchment		Cover	Impervious	Coefficient		Description		
2111113111111411111151111116111111711111191111111011111111111111121111111311111114111111151111111611111119111112011111211111123111112411111251111128111112911111					-				
3		0.03	0.03	1.00	0.95	164.70	Infiltration		
4111115111111611111171111119111111101111111111111112111111131111111411111115111111161111111711111118111111201111121111112211111231111124111112511111261111128111112911111									
5 $\begin{timeset bmatrix} 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 $									
61111171111118111111191111111101111111111111111121111111131111111141111111151111111161111111171111111181111111201111111211111111221111111231111111241111111251111111261111111281111111291111111191111111 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
71111118111111191111111101111111111111111121111111131111111141111111151111111161111111171111111181111111201111111211111111221111111231111111241111111251111111261111111281111111291111111									
8111191111110111111111111121111113111111411111151111116111111711111181111120111112111111221111123111112411111251111126111128111129111									
9100100100100100100100100100111001001001001001001001210010010010010010010013100100100100100100100141001001001001001001001510010010010010010010016100100100100100100100161001001001001001001001610010010010010010010017100100100100100100100181001001001001001001001910010010010010010010020100100100100100100100211001001001001001001002310010010010010010010024100100100100100100100261001001001001001001002810010010010010010010029100100100100100100100									
10Image: sector of the sector of									
11 11	9								
12 13 14 16	10								
13 Image: state in the	11								
14Image: sector of the sector of	12								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16								
19Image: selection of the select	17								
20Image: selection of the select	18								
21Image: selection of the select	19								
22Image: selection of the select	20								
23Image: state of the state of t	21								
24Image: selection of the select	22								
24Image: selection of the select	23								
26 Image: Constraint of the system Image: Constand or the system	24								
26 Image: Constraint of the system Image: Constand or the system	25								
27									
28 29									
29									
	30								

	Runoff Reduction V	olume a	nd Treated vo	lumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
quc	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Rei	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olu	Rain Garden	RR-6	0.00	0.00	0	
a∕	Stormwater Planter	RR-7	0.00	0.00	0	
Are	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.03	0.03	162	3
1Ps city	Infiltration Basin	I-2	0.00	0.00	0	0
l SN apae	Dry Well	I-3	0.00	0.00	0	0
ard v Ca	Underground Infiltration System	I-4				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	0.00	0.00	0	0
	Dry swale	0-1	0.00	0.00	0	0
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
Ś	Pocket Pond (p-5)	P-5				
SMPs	Surface Sand filter (F-1)	F-1				
s p.	Underground Sand filter (F-2)	F-2				
Standard	Perimeter Sand Filter (F-3)	F-3				
itan	Organic Filter (F-4	F-4				
0)	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2				
	Totals by Area Reduction	\rightarrow	0.00	0.00	0	
	Totals by Volume Reduction		0.00	0.00	0	
	Totals by Standard SMP w/RRV		0.03	0.03	162	3
	Totals by Standard SMP	\rightarrow	0.00	0.00		0
Т	otals (Area + Volume + all SMPs)	\rightarrow	0.03	0.03	162	3
	Impervious Cover V	okay				
	Total Area V	okay				

Minimum RRv

Enter the Soils Da	Enter the Soils Data for the site			
Soil Group	Acres	S		
A	0.00	55%		
В	0.03	40%		
С	0.00	30%		
D	0.00	20%		
Total Area	0.034113866			
Calculate the Mini	imum RRv			
S =	0.40			
Impervious =	0.03	acre		
Precipitation	1.4	in		
Rv	0.95			
Minimum RRv	66	ft3		
	0.00	af		

NOI QUESTIONS

#	NOI Question Reported Va			
		cf	af	
28	Total Water Quality Volume (WQv) Required	165	0.004	
30	Total RRV Provided	162	0.004	
31	Is RRv Provided ≥WQv Required?	No		
32	Minimum RRv	66	0.002	
32a	Is RRv Provided ≥ Minimum RRv Required?	Yes		
33a	Total WQv Treated	3	0.000	
34	Sum of Volume Reduced & Treated	165	0.004	
34	Sum of Volume Reduced and Treated	165	0.004	
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes		

98.36%

	Apply Peak Flow Attenuation							
36	Channel Protection	Срv						
37	Overbank	Qp						
37	Extreme Flood Control	Qf						
	Are Quantity Control requirements met?	Yes	Plan Completed					

Planning

Practice	Description	Application
Preservation of Undisturbed Areas	Delineate and place into permanent conservation undisturbed forests, native vegetated areas, riparian corridors, wetlands, and natural terrain.	
Preservation of Buffers	Define, delineate and preserve naturally vegetated buffers along perennial streams, rivers, shorelines and wetlands.	
Reduction of Clearing and Grading	Limit clearing and grading to the minimum amount needed for roads, driveways, foundations, utilities and stormwater management facilities.	
Locating Development in Less Sensitive Areas	Avoid sensitive resource areas such as floodplains, steep slopes, erodible soils, wetlands, mature forests and critical habitats by locating development to fit the terrain in areas that will create the least impact.	
Open Space Design	Use clustering, conservation design or open space design to reduce impervious cover, preserve more open space and protect water resources.	
Soil Restoration	Restore the original properties and porosity of the soil by deep till and amendment with compost to reduce the generation of runoff and enhance the runoff reduction performance of post construction practices.	
Roadway Reduction	Minimize roadway widths and lengths to reduce site impervious area	
Sidewalk Reduction	Minimize sidewalk lengths and widths to reduce site impervious area	
Driveway Reduction	Minimize driveway lengths and widths to reduce site impervious area	
Cul-de-sac Reduction	Minimize the number of cul-de-sacs and incorporate landscaped areas to reduce their impervious cover.	
Building Footprint Reduction	Reduce the impervious footprint of residences and commercial buildings by using alternate or taller buildings while maintaining the same floor to area ratio.	
Parking Reduction	Reduce imperviousness on parking lots by eliminating unneeded spaces, providing compact car spaces and efficient parking lanes, minimizing stall dimensions, using porous pavement surfaces in overflow parking areas, and using multi-storied parking decks where appropriate.	

Infiltration Trench Worksheet

Design Point:	DP-2							
	Enter	Site Data For	Drainage Are	a to be ⁻	Treated by	Practice		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description	
1	0.03	0.03	1.00	0.95	165	1.40	Infiltration Trench	
Enter Imperviou by Disconnection		0.00	100%	0.95	165	< <wqv ac<br="" after="">Disconnected R</wqv>		
			Design Elen	nents				
		Pretreatmen	t Techniques		ent Cloggir	ησ		
Infiltration Rate		Tretreatmen	0.57	in/hr	Okay	15		
Pretreatment Si			25%	of WQv	25% minimum 50% if >2 in/hr:			
Required Pretre	atment Volume		41	ft ³				
Pretreatment P			50	ft ³				
Pretreatment te	echniques utilize	d	Grass Buffer Grass Channe		sedimenta	•	ed in the form of a pit, grass channel, re	
		Siz	e the Infiltrati	ion Tren	ch			
			Ap = Vw /	(ndt)				
Design	Volume	Vw	165	ft ³				
Porc	osity	n	0.4					
Design	Depth	dt	1.5	ft	maximum	of four feet		
Depth to Gr	roundwater		6.0	ft	>3 feet fro	om seasonally h	igh water table	
Required Su	urface Area	Ар	274	ft ²				
Wie	dth	W	10	ft	Provide th	e dimensions he	ere	
Len	gth	L	30	ft	Provide the dimensions here			
Surface Are	ea Provided		300	ft ²	Okay			
Volume I	Provided			ft ³	Storage Volume provided in infiltration trench not including pretreatment.			
		Dete	ermine Runof	f Reduc	tion			
RRv		162	ft ³	90% of	the storag	e provided		
Volume Treated	1	3	ft ³	This is the portion of the WQv that is not reduced/infiltrated				

Infiltration Trench Worksheet

Total RRV	162.00
Total Area	0.03
Total Impervious Area	0.03
Total Volume Treated	2.70
Rooftop Disconnect Impervious Area Total	0.00

OLD MYERS SOLAR Time of Concentration Summary

Description: This worksheet provides the equations and constants used to determine the time of concentrations calculated in the subsequent worksheets using the Natural Resources Conservation Service (NRCS) (formerly the Soil Conservation Service (SCS)) velocity method.

Time of Concentration Equations:

1. Where	$T_{i} = \frac{0.007 (mt)^{1.6}}{\left(P_{2}\right)^{1.6} S^{0.6}}$	from NRCS TR-55 where $P_2 = 2$ -Year, 24 Hour Rainfall (in)	For Sheet Flow (300 feet or less, typically no more than 100 feet) (Somerset County (south), ME: P2= 2.7 inches)
2. Where	$\overline{\tau}_i = \frac{\ell}{3,600V}$	from the SCS Upland Method Channel Flow Chart	Travel time equation
3. Where	$V\!=\!20.328(s)^{15}$	from the SCS Upland Method Channel Flow Chart	For Shallow Concentrated Flow - Paved surfaces
4. Where	$V = 16.1345(s)^{10}$	from the SCS Upland Method Channel Flow Chart	For Shallow Concentrated Flow - Unpaved surfaces and grassed waterways
5. Where	V=6.962(s) ^{0.5}	from the SCS Upland Method <i>Channel</i> Flow Chart	For Shallow Concentrated Flow - Short-grass pasture
6. Where	$V=5.032(8)^{65}$	from the SCS Upland Method <i>Channel</i> Flow Chart	For Shallow Concentrated Flow - Woodlands
7. Where	$V=12(8)^{0.5}$	from the SCS Upland Method <i>Channel</i> Flow Chart	For Channel Flow - Waterways and swamps, no channels
8. Where	$V = 15(8)^{65}$	from the SCS Upland Method <i>Channel</i> Flow Chart	For Channel Flow - Grassed waterways and roadside ditches
9. Where	$V{=}21(s)^{\alpha\alpha}$	from the SCS Upland Method <i>Channel</i> Flow Chart	For Channel Flow - Small tributary & swamp w/ channels
10. Where	$V = 3\delta(s)^{15}$	from the SCS Upland Method <i>Channel</i> Flow Chart	For Channel Flow - Large tributary
11. Where	V=60(s) ¹⁵	from the SCS Upland Method <i>Channel</i> Flow Chart	For Channel Flow - Main river
12. Where	$V = \frac{1.49r^3s^3}{n}$		For Channel Flow - Culvert flow

Manning's Roughness	Coefficients	for Sheet Flow
maining 5 houghiness	cocincicities	

Surface Description	n - value
Smooth surface	0.011
Crushed stone/Substation yard	0.025
Fallow	0.050
Cultivated: Residue<=20%	0.060
Cultivated: Residue>20%	0.170
Grass: Short	0.150
Grass: Dense	0.240
Grass: Bermuda	0.410
Range	0.130
Woods: Light underbrush	0.400
Woods: Dense underbrush	0.800

"h"0.333Image: Normal set of the set of th	Subcatchme	ent ID:	Pre	-Development	1S					
Immuno 0.00 Immuno 0.00 Immuno 0.00 0 <th></th> <th></th> <th>Seg 2</th> <th>Seg 3</th> <th>Seg 4</th> <th>Seg 5</th> <th>Seg 6</th> <th>Seg 7</th> <th>Seg 8</th> <th></th>			Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
mpph 100 100 100 100 100 100 10000 1000										
1.1 3.15 0.023 0.033 0.033 0.033 14.0 0.074 0.074 0.034 0.035 0.035 14.0 0.074 0.074 0.074 0.005 0.005 14.0 0.074 0.074 0.005 0.005 0.005 17.0 0.005 0.005 0.005 0.005 0.000 17.0 0.005 0.005 0.000 0.000 0.000 17.0 0.005 0.005 0.000 0.000 0.000 17.0 0.005 0.005 0.000 0.000 0.000 17.0 0.005 0.005 0.000 0.000 0.000 17.0 0.005 0.005 0.000 0.000 0.000 17.0 0.005 0.000 0.000 0.000 0.000 17.0 0.000 0.000 0.000 0.000 0.000 17.0 0.000 0.000 0.000 0.000 0.0000 0.000										
Bigs. Br. Bigs. Br. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
mathem0.0000.0000.0000.000Read80%250%3	2. Slope, ft/ft									
Taread SCF-2 SCF-3 SCF-3 sep.h.f. sep.h.f. sep.h.f. sep.h.f. sep.h.f. sep.h.f. sep.h.f. sep.h.f. sep.h.f. sep.h.f. step.h.f. sep.h.f. sep.h.f. sep.h.f. sep.f.f. step.h.f. sep.h.f. sep.f.f. sep.f.f. sep.f.f. step.h.f. 0.000 sep.f.f. sep.f.f. sep.f.f.	t, hr	0.335								0.3354
mgh. h mgh. h<	SHALLOW CONCENTRA	ATED FLOW								
toose, this	Paved		SCF-2	SCF-3				1		
bicongh bicongh <t< td=""><td>.ength, ft</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	.ength, ft									
Image distance & Gassed Waterways 0,0000 ange, fr. Gassed Waterways 0,0000 ange, fr. 0,000 0,0000 boot, fr. fr. 0,000 0,0000 seg. fr. fr. 0,000 0,000 boot, fr. fr. 0,411 0,6860 boot, fr. fr. 0,411 0,6860 boot, fr. fr. 0,411 0,6860 boot, fr. 0,411 0,6000 brane brane brane brane brane brane brand brane brand brane brane brane brane brane brane brane brand bra										
Ungaved Burfaces & Grassed Waterways										
seq.h seq.h <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0000</td></t<>										0.0000
topologinal image in the second		assed Waterways	6					1		
bach / these is a set of the set										
International system Open of the system Open										
Inder-Grass Pasture SCF-1 0.0000 Vocalinat 0.0000 0.0000 Starting in the start in the sta										0.0000
rengh, f. witcory, fixes		SCF-1								0.0000
tope, fin		001-1								
Bitsongh Rabe Image										
if in a content is content is a content is content is a content i	/elocity ⁵ , ft/sec									
Yoodland Image Processing Procestoprocessing Processing Pro	² , hr									0.0000
maph, h 710 399 Market I Markt I Markt I Markt I<	Voodland									
logon fm 0.088 0.030 0.030 0.030 ideon fm 0.450 0.188 0.087 iterative set set set set set set set set set se	ength, ft		719		369					
Discription 0.441 0.888 0 0 0 0.5577 PHANEL FLOW Samps, NC Channels 0.5577 0.5577 0.5577 0.5577 Marker Status 0.118 0 0 0.0000 0.0000 Samps, NC Channels 0.0000 0.0000 0.0000 0.0000 Transed Waterways/Roadside Ditches 0 0 0.0000 0.0000 Transed Waterways/Roadside Ditches 0 0 0.0000 0.0000 Sample Tributary & Swamp w/Channels 0 0.0000 0.0000 0.0000 smail Tributary & Swamp w/Channels 0.0023 0.0015 0.0015 0.0015 status 477 0.002 0.016 0.015 0.015 status 0.022 0 0.015 0.015 0.015 status 0.023 0.024 0.015 0.0000 0.0001 status 0.024 0.015 0.0000 0.0000 0.0000 status 0.022 0.0000 0.0000	Slope, ft/ft									
HANNEL, FLOW Vatorways & Swamps, No Channels	/elocity ⁶ , ft/sec									
Valorways & Swamps, No Channels	t ² , hr		0.450		0.118					0.5677
nigh, f. hippa, hf. hippa, hippa,	HANNEL FLOW									
iope, fm 0.0000 rassed Waterways/Roadside Ditches 0.0000	Vaterways & Swamps,	No Channels								
gite cody 0.0000 grassed Waterways/Roadside Ditches 0.0000 engly, fl. 0.000 loop, fl. 0.000 loop, fl. 0.000 loop, fl. 0.000 gite, fl. 0.000 mail Tributary & Swamp w/Channels 0.000 engly, fl. 0.023 loop, fl. 0.023 loop, fl. 0.023 loop, fl. 0.042 loop, fl. 0.0415 arge Tributary 0.042 loop, fl. 0.042 loop, fl. 0.0000 Alain River 0.0000 loop, fl. 0.0000 Lumeder, fl. 0.0000 Luwer 0.0000 Luwer 0.0000 Luwer 0.0000 Luwer 0.0000 Luwer 0.0000 loop, fl. 0.0000	ength, ft									
Åm Image Image <thimage< th=""> Image Ima</thimage<>	Slope, ft/ft									
Sinessed Waterways/Roadside Ditches 0.0000 ength, ft 0.0000 Biologe, ft/ft 0.0000 second, 7, faceo 0.0000 angth, ft 0.023 labor, ft/ft 0.023 sile of the second, 7, for 0.0415 arger Fibulary 0.0415 arger fibulary 0.0415 arger fibulary 0.0400 second, 7, for 0.0000 Alain River 0.0000 ength, ft 0.0000 standers, ft 0.0000 Alain River 0.0000 ength, ft 0.0000 standers, ft 0.0000 Standers, ft 0.0000 Alain River 0.0000 standers, ft 0.0000 Standers, ft 0.0000 Standers, ft 0.0000										
engh, ft tiope, fth tiope, fth decoty ² , fixec a, fth decoty ² , fixec a, fth decoty ² , fixec and Fixed a, fth decoty ² , fixec and Fixed and Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed										0.0000
idep. fth electly?. ftsec */r 477 0.000 0.0000 Small Tributary & Swamp W/Channels 477 0.023 0.000 Small Tributary & Size */r 0.023 0.023 0.001 0.001 Small Tributary & Size */r 0.023 0.023 0.001 0.0015 stage Tributary 0.042 0.0415 0.0415 0.0415 arge Tributary 0.042 0.0415 0.0000 0.0000 Arge Tributary 0.042 0.0415 0.0000 0.0000 Arge Tributary 0.042 0.0000 0.0000 0.0000 Arge Tributary 0.0000 0.0000 0.0000 0.0000 0.0000 Arge Tributary 0.0000 0.00		adside Ditches								
Visce 0.000 0.000 Shart Fiburary & Swamp WChannels 0.000 0.000 engh, ft 0.023 0.0415 iope, ft/ft 0.042 0.0415 arge Tributary & Swamp WChannels 0.042 0.0415 iope, ft/ft 0.042 0.0415 arge Tributary 0.042 0.0415 arge Tributary 0.042 0.000 Arge Tributary 0.042 0.0415 iope, ft/ft 0.042 0.0000 ft/ft 0.000 0.0000 ft/ft 0.000 0.0000 ft/ft 0.000 0.0000 ft/ft 0.0000										
*, 'n' 0 0.000 mail Tributary & Swam, WChannels 477 0.02 engh, ft 0.023 0.04 0.01 iope, ft/ft 0.023 0.04 0.0415 arge Tributary 0.042 0.041 0.0415 arge Tributary 0.042 0.041 0.000 arge Tributary 0.042 0.041 0.000 arge Tributary 0.041 0.000 0.0000 arge Tributary 0.041 0.000 0.0000 arge Tributary 0.0000 0.0000 0.0000 ft/ free 0.0000 0.0000 0.0000 fain River 0.0000 0.0000 0.0000 for decoty ⁰ , ft/sec 0.0000 0.0000 0.0000 ft/ free 0.0000 0.0000 0.0000 0.0000 ft/ free 0.0000 0.0000 0.0000 0.0000 0.0000 ft/ free 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ft/ free 0.0000 0.0000 0.0000 0.0000 0.0000 0.00										
Small Tributary & Swamp w/Channels 477 ength, ft 0.023 loope, fuff. 0.023 loope, fuff. 0.0415 arge Tributary 0.0415 arge Tributary 0.042 ength, ft 0.042 loope, fuff. 0.0415 arge Tributary 0.0000 Afin River 0.0000 ength, ft 0.0000 biope, fuff. 0.0000 biope, fuff. 0.0000 Datareter, ft 0.0000 biope, fuff. 0.0000 annings No. 0.0000 elochy ² , fixec										0.0000
engh, ft liope, ftf chr efgh, ft liope, ftf telochy ⁰ , fixec 2, hr engh, ft liope, ftf telochy ¹ , fixec 2, hr engh, ft liope, ftf telochy ² , fixec engh, ft liope, ft telochy ² , fixec engh, ft liope, ft telochy ² , fixec engh, ft liope, ft telochy ² , fixec engh, ft liope, ft liope, ft telochy ² , fixec engh, ft liope, ft telochy ² , fixec engh, ft liope, ft										0.0000
iope, ft/ft 0.023 3.189 0.0415 arge Tributary 0.042 0.0415 arge Tributary 0.0416 0.0415 arge Tributary 0.0416 0.0416 ength, ft 0.042 0.0416 biope, ft/ft 0.042 0.0415 ength, ft 0.042 0.0416 biope, ft/ft 0.042 0.0416 biope, ft/ft 0.0416 0.0416 biope, ft/ft 0.0416 0.0000 Atin River 0.0000 0.0000 Atin River 0.0000 0.0000 State of the second s		ip w/Channels		477						
elocky ⁰ , fixec 3.189 0.042 0.0415 arge Tributary 0.0415 0.0415 arge fixec 0.0416 0.0415 arge fixec 0.0416 0.0415 stope, fit 0.0416 0.0416 stope, fit 0.0416 0.0416 stope, fit 0.0416 0.0000 Alan River 0.0000 0.0000 arge fit 0.0000 0.0000 Alan River 0.0000 0.0000 arge fit 0.0000 0.0000 biope, fit 0.0000 0.0000 stope, fit 0.0000 0.0000 stope, fit 0.0000 0.0000 isope, fit 0.0000 0.0000 arnings No. 0.0000 0.0000 engly, fit 0.0000 0.0000 >>>>>>>>										
2, hr 0.042 0.0415 arge Tributary										
arge Tributary										0.0415
engh, ft liope, ft/ft leochy ⁰ , ft/sec ² , ¹ /r engh, ft liope, ft/ft leochy ¹ , ft/sec ² , ¹ /r meter, ft lydraule Radius, R, ft liope, ft/ft leochy ¹ , ft/sec ² , ¹ /r meter, ft lydraule Radius, R, ft liope, ft/ft leochy ¹ , ft/sec leochy ¹ , ft/sec leoch				0.072			1			0.0410
liope, fu'fi elocity ¹⁰ , fi/sec <u>i'</u> , fir iope, fu'fi liope, fu'fi elocity ¹¹ , fi/sec <u>i'</u> , fir elocity ¹² , fif sec elocity ¹² , fif elocity ¹³ ,										
Pelocky ¹⁰ , ft/sec Image: state	Slope, ft/ft									
1/2, hr Image: Contract of the second se	/elocity ¹⁰ , ft/sec									
Alain River ength, ft iope, ft/ft iope, ft/ft iope, ft/ft iope, ft/ft 0.0000 Culvert	t ² , hr									0.0000
ength, ft iope, ft/ft	lain River									
integration of the relation of	ength, ft									
relocity ¹¹ , ft/sec 0.0000 Culvert 0.0000 Culvert Value ft, ft, rea, ft ² Value ft, ft, rea, ft ²	Slope, ft/ft									
Culvert viameter, ft viameter, ft rea, ft² Vetted Perimeter, ft lydraulic Radius, R, ft lydraulic Radius, R, ft loop, fuft tanning's No. loop(loft) ¹² , ft/sec ength, L, ft 0.0000 Time of Concentration, Te, hr: 0.945										
iameter, ft rea, ft ² /etted Perimeter, ft Jope, ft/ft Ianning's No. elocity ¹² , ft/sec ength, L, ft r ² , hr	², hr									0.0000
rea, ft ² /etted Perimeter, ft ydraulic Radius, R, ft lope, ft/t lanning's No. elochy ¹² , ft/sec ength, L, ft ² , hr Time of Concentration, T _e , hr: 0.945										
Vetted Perimeter, ft ydraulic Radius, R, ft lope, ft/ft lanning's No. elocity ¹² , ft/sec ength, L, ft ² , hr Time of Concentration, T _e , hr: 0.945			Τ						_	
ydraulic Radius, R, ft lope, ft/ft lanning's No. elocity ¹² , ft/sec ength, L, ft 2 [°] , hr										
lope, ft/ft tanning's No. elocity ¹² , ft/sec ength, L, ft end tanning's No. elocity ¹² , ft/sec ength, L, ft end tanning tank tank tank tank tank tank tank tank										
tanning's No. elocity ¹² , ft/sec ength, L, ft c ² , hr										
elocity ¹² , ft/sec ength, L, ft ² , hr Time of Concentration, T _e , hr: 0.945										
ength, L, ft 2 [°] , hr Time of Concentration, T _e , hr: 0.945										
Approx Concentration, Te, hr: 0.0000 Time of Concentration, Te, hr: 0.945										
Time of Concentration, T _c , hr: 0.945										
	î, hr									

Subcatchmo	ent ID:	Pre	-Development	2S					
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
HEET FLOW	SF-1								
anning's No. ength, ft	0.240 100								
engtn, π _{2,} in	3.15								
2, "' lope, ft/ft	0.004								
1, hr	0.456								0.4563
HALLOW CONCENTR	ATED FLOW	· · · · · ·				1 1			
aved		SCF-2	SCF-3						
ength, ft									
lope, ft/ft									
elocity ³ , ft/sec									
² , hr									0.0000
npaved Surfaces & G	rassed Waterways	S			1				
ength, ft									
lope, ft/ft									
elocity ⁴ , ft/sec									
									0.0000
hort-Grass Pasture	SCF-1	24		204		00			
ength, ft lope, ft/ft		24		364		89			
lope, ft/ft elocity ⁵ , ft/sec		0.004 0.4494		0.023 1.0513		0.018 0.9335			
² , hr		0.4494		0.096	[0.026			0.1375
Voodland		0.010		0.000		0.020			0.1070
ength, ft			30		36				
lope, ft/ft			0.033		0.025				
elocity ⁶ , ft/sec			0.9187		0.7956				
², hr			0.009		0.013				0.0216
HANNEL FLOW						1			
Vaterways & Swamps,	No Channels								
ength, ft									
lope, ft/ft									
elocity ⁷ , ft/sec									
² , hr									0.0000
Grassed Waterways/Ro	adside Ditches								
ength, ft									
lope, ft/ft									
elocity ⁸ , ft/sec									
², hr									0.0000
mall Tributary & Swar	np w/Channels								
ength, ft									
lope, ft/ft									
/elocity ⁹ , ft/sec									
² , hr									0.0000
arge Tributary									
ength, ft									
ilope, ft/ft ′elocity ¹⁰ , ft/sec									
elocity , ft/sec t, hr									0.0000
lain River					1				0.0000
ength, ft									
lope, ft/ft					[
elocity ¹¹ , ft/sec					[
² hr					[0.0000
ulvert					I				0.0000
iameter, ft									
rea, ft ²							1		
etted Perimeter, ft					[
ydraulic Radius, R, ft					[
lope, ft/ft					[
anning's No.					[
elocity ¹² , ft/sec									
ength, L, ft					[
² , hr									0.0000
	1				I		Time of Co	ncentration, T _c , hr:	0.615

opa, hh0.918 0.3240.918 0.3240.918 0.3240.924 0.3240.924 0.324Aut Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"ValueColspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"ValueColspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4">Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4">Colspan="4"<	Subcatchm	ent ID:	Pre	-Developmen	t 3S					
marry the 0.00 0.00 0.00			Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
mpth 100 mpth 100 mpth 001 mpth 001 mpth 001 mpth 001 mpth mpth 001 mpth mpth 001 mpth mpth <td></td>										
n 315 006 0.000 0.000 hr 0.000 0.07.2 0.07.3 0.07.4 0.07.4 set 0.07.2 0.07.2 0.07.4 0.07.4 0.07.4 set 0.07.4 0.07.4 0.07.4 0.07.4 0.000 set 0.07.4 0.07.4 0.07.4 0.000 0.000 reget 0.07.4 0.07.4 0.000 0.000 0.000 reget 0.07.4 0.001 0.001 0.000 0.000 0.000 reget 0.07.4 0.001 0.004 0.000 0										
tops nn 0.06 0.094 0.094 0.094 Nal Leor CONCENTRATE O LOW SCF.2 SCF.3 SCF.3 SCF.3 send SCF.2 SCF.3 SCF.3 SCF.3 SCF.3 spin fl. SCF.2 SCF.3 SCF.3 SCF.3 SCF.3 spin fl. SCF.2 SCF.3 SCF.3 SCF.3 SCF.3 spin fl. SCF.3 SCF.3 SCF.3 SCF.3 SCF.3 spin fl.3 SCF.1 SCF.3 SCF.3 SCF.3 SCF.3 spin fl.3 SCF.1 SCF.3 SCF.3 SCF.3 SCF.3 spin fl.3 SCF.1 SCF.3 SCF.3 SCF.3 SCF.3 <	engui, n 2, in									
'm 0.93 or 0 0 0 0.934 ALLOW COCKENTED FLOW and and Constitution of the second second in the second in t	Slope, ft/ft									
aved 50°2 50°-3 spit. It spit. It spit. It spit. It spit. It S0°-2 50°-3 0000 0000 0000 free S0°-2 S0°-3 0000 0000 0000 0000 spit. It S0°-2 S0°-3 0000 0000 0000 0000 sop. Atta S0°-2 S0°-4 0000 0000 0000 0000 sop. Atta S0°-2 S0°-4 S0°-2 00000 0000 0000 000	t ¹ , hr	0.394								0.3944
mgh. h. moory, fisme mgh. h. m	SHALLOW CONCENTR	RATED FLOW								
Jose Min	aved		SCF-2	SCF-3						
bachy heads	ength, ft									
'ht old with old with old with 'ht old with 'ht old with 'ht old										
ngaved Surface & Grassed Waterways ingh, f opp, M op										0.0000
range, fin a 13 a b a b absolp bbsolp 100051273 a a a a bbsolp bbsolp a a a a a a reg, fit a		raced Waterway								0.0000
spin.th image: the set of		rassed waterways	5		12					
bach house in a start income in a start income in a start income in a start income in a start house of the start 0.004 </td <td></td>										
"m Image: Barbane Open demonstration of the second of										
regin in the open i	² , hr									0.0036
open fit in the set of the set o	hort-Grass Pasture	SCF-1								
block 0.2400 0.007 0 0 0.009 fordland 0.007 0.001 0.009 fordland 0.007 0.001 0.009 fordland 0.007 0.0034 0.009 fordland 0.000 0.0034 0.001 0.009 fordland 0.000 0.0034 0.001 0.1461 Harry 26 Stamp5, No Channels 0.000 0.000 0.0000 fordland 0.000 0.000 0.0000 0.0000 fordlands 0.000 0.0000 0.0000 0.0000 rassed Waterways/Routide Differes 0.0000 0.0000 0.0000 ran	ength, ft			78						
Phenomena ODEP ODEP ODEP ODEP ODEP ODEP focalisand 00000 00000 00000	Slope, ft/ft									
incodiand	/elocity ⁵ , ft/sec									
ngh h 237 54 0 0 stady, fisec 0.004 0.034 0.034 0.044 0.1461 ANNEL FLOW 0.130 0.016 0.1461 0.1461 0.1461 ANNEL FLOW 0.000 0.016 0.1461 0.1461 0.1461 Swamps, NO Channels 0.130 0.160 0.160 0.160 0.000 reght, fi 0.100 0.100 0.160 0.160 0.000 reght, fi 0.100 0.160 0.160 0.000 0.000 resoft MaterwaysRoadSide Ditches 0.000 0.000 0.000 0.000 resoft MaterwaysRoadSide Ditches 0.000 0.000 0.000 0.000 resoft MaterwaysRoadSide Ditches 0.000 0.000 0.000 0.000 reght, fi 0.000 0.000 0.000 0.000 0.000 arge fi 0.000 0.000 0.000 0.000 0.000 arge fi 0.000 0.000 0.000 0.0000				0.087						0.0869
open thit 0.000 0.034 0.014 0.100 third 0.130 0.014 0.1461 HANNEL FLOW Interview 3.8 Sono Channels										
bicol, finance 0.0004 0.0314 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.000										
Imp 0.130 0.016 0.016 0.1461 HANNEL FLOW Addreways & Sowamps, No Channels Impact of the sowamp, No Channels Impact of the s										
HANNEL FLOW // the control is a first										0 1461
Jaterways & Swamps, No Channels 0.0000 0.0000 0.0000			0.100			0.010		1		0.1401
rangh, f. 0000 0000 ref 0000 0000 resol Waterways/Roadside Ditches 0000 0000 regs, filt 0 0000 regs, filt		No Channels								
inderivity Image:	ength, ft									
In m m	Blope, ft/ft									
rassed Waterways/Roadside Ditches	/elocity ⁷ , ft/sec									
ngh, ft ope, ftf 'h' 'h' ope, ftf sicch', fisec 'h' 'h' 'h' 'h' 'h' 'h' 'h' 'h' 'h' 'h	t, hr									0.0000
pee, fit in		oadside Ditches					1	I		
abedy?, filseo	ength, ft									
Image: normal instruction of the second s										
mail Tributary & Swamp w/Channels 0.0000 ngh, ft 0.0000 arge Tributary 0.0000 ulvert 0.0000 arge Tributary 0.0000 ulvert 0.0000 arge Tributary 0.0000 ulvert 0.0000 arge Tributary 0.0000 arge Tributary 0.0000										0.0000
ingth, ft		mp.w/Channela								0.0000
ope, full later, fly reg. Trissee 0 0 0 0.0000 arge Tributary 0 0 0 0 0.0000 arge Tributary 0 0 0 0 0 0 arge Tributary 0 <td></td> <td>mp w/channels</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		mp w/channels								
alochy ² , ft/sec										
arge Tributary	/elocity ⁹ , ft/sec									
mgh, ft ope, ft/ft	² , hr									0.0000
ope, ft/ft socky ⁰ , ft/sec	arge Tributary									
alocity ¹⁰ , ft/sec	ength, ft									
², hr Image: Contract of the section of t	Slope, ft/ft						[
ain River ope, fut,										
angh, ft ope, ft/ft sloci (y^1, ft/sec										0.0000
ope, ft/ft alocity ¹¹ , ft/sec 0.0000 2 ¹ , hr 0.0000 ulvert 0.0000					1					
alocity ¹¹ , ft/sec ² , hr ameter, ft ea, ft ² tetted Perimeter, ft ydraulic Radius, R, ft oope, ft/ft anning's No. alocity ¹² , ft/sec ingth, L, ft ² , hr Time of Concentration, T _e , hr: 0.631	-									
2 hr Image: state of the										
ulvert ameter, ft ea, ft ² etted Perimeter, ft ydraulic Radius, R, ft ope, ft/ft anning's No. alocity ¹² , ft'see ft, ft 2, hr Time of Concentration, T _e , hr: 0.631										0.0000
ameter, ft ea, ft ² etted Perimeter, ft ydraulic Radius, R, ft ope, ft/ft anning's No. alocity ¹² , ft/sec ength, L, ft ² , hr Time of Concentration, T _c , hr: 0.631					I					0.0000
ea, ft ² etted Perimeter, ft dytaulic Radius, R, ft ope, ft/ft anning's No. alocity ¹² , ft/sec ingth, L, ft ² , hr Time of Concentration, T _e , hr: 0.631										
etted Perimeter, ft ydraulic Radius, R, ft ope, ft/ft anning's No. elocity ¹² , ft/sec sngth, L, ft ² , hr	rea, ft ²									
ydraulic Radius, R, ft ope, ft/ft anning's No. elocity ¹² , ft/sec ength, L, ft ² , hr Time of Concentration, T _e , hr: 0.631	/etted Perimeter, ft									
ope, ft/ft anning's No. slocity ¹² , ft/sec sngth, L, ft ² , hr Time of Concentration, T _e , hr: 0.631	lydraulic Radius, R, ft						[
alocity ¹² , ft/sec angth, L, ft ² , hr Time of Concentration, T _c , hr: 0.631	lope, ft/ft									
angth, L, ft 0.0000 2, hr Time of Concentration, T _c , hr: 0.631	anning's No.						[
2, hr 0.0000 Time of Concentration, T _c , hr: 0.631	elocity ¹² , ft/sec									
Time of Concentration, T _e , hr: 0.631	ength, L, ft									
	², hr									0.0000
								Time of C	oncentration, T _c , hr:	0.631

The data of the original set	Subcatchme	ent ID:	Pos	t-Developmer	it 1S					
Barring No. 0.40 Image No. 0.40 Image No. Image			Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
mgh, h 100 1<										
i.h. 3.5. 3.3.5 3.3.5 3.3.5 i.w. 3.3.5 3.3.5 3.3.5 3.3.5 i.w. 3.3.5 3.3.5 3.3.5 3.3.5 i.w. 507.2 607.3 507.2 3.3.5 i.m. 507.2 607.3 507.2 3.0.5 i.m. 5.0.5 5.0.5 5.0.5 5.0.5 i.m. 5.0.5 </td <td></td>										
Book Book <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
"Int of 2003 and 2004 a	2. Slope, ft/ft									
areadSOF2SOF3SOF3steps. htSOF2SOF3anonosteps. htSOF2SOF3anonosteps. htSOF3SOF3anonosteps. htSOF3SOF3SOF3steps. htSOF3SOF3 <td>Γ_t¹, hr</td> <td>0.335</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.3354</td>	Γ _t ¹ , hr	0.335								0.3354
mugh. h score. h Worklowed. 'n 	SHALLOW CONCENTR	ATED FLOW								
Insert for the second for th	Paved		SCF-2	SCF-3	1		1	1		
should in the index intervalSecond in the index										
1 ¹ h - - 0.000 Targend Surface & Crassed Waterways - <td></td>										
Ungaved Surfaces & Grassed Waterways 0.000 0.0000 0.										0.0000
maph fine or and final and		assod Watorways								0.0000
topse.th		asseu waterways	3							
bicology										
Inder-Grass Pature SCF-1 Image: SCF-1 <thimage: scf-1<="" t<="" td=""><td>/elocity⁴, ft/sec</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thimage:>	/elocity ⁴ , ft/sec									
engle fit image	t, hr									0.0000
biology. Nac Image: National State Sta	Short-Grass Pasture	SCF-1								
decay, name nam name name	₋ength, ft									
And theoryImage: An image:	Slope, ft/ft									
Yoodland In In <thin< th=""> In In <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thin<>										
mengh. ft 719 0.99 0.99 0.000 0.000 0.460 0.000 0.000 0.000 0.0577 Mark C. L. C. W 0.460 0.118 0.000 0.0577 Mark C. L. C. W 0.460 0.118 0.000 0.0000 Grant M. M. Statistical Ditches 0.000 0.0000 0.0000 Grant M. M. Statistical Ditches 0.000 0.0000 0.0000 Grant M. Statistical Ditches 0.023 0.0000 0.0000 Statistical Ditches 0.023 0.000 0.0000 Statistical Ditches 0.023 0.000 0.0000 Statistical Ditches 0.023 0.000 0.0000 Statistical Ditches 0.042 0.0415 0.0415 Grant M. Channels 0.042 0.000 0.0000 Statistical Ditches 0.042 0.0415 0.0415 Statistical Ditches 0.0415 0.0000 0.0000 Statistical Ditches 0.0415 0.0000 0.0000 Statistin Ditch										0.0000
loop. Brit 0.008 0.030 0.030 0.030 Vertawing 10000 0.450 0.118 0.5577 Vertawing 26 Sommp, No Channels			710		200					
where the<										
The control of the c										
HANNEL FLOW Vatorways & Swamps, No Channels mgh. ft. 0.0000 Vatorways & Swamps, No Channels 0.0000 0.0000 Srassed Watorways/Roadside Ditches 0.0001 0.0000 Srassed Watorways/Roadside Ditches 0.0000 0.0000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.5677</td>										0.5677
nigh, f. hipe, hft hipe, hipe hipe, hipe hip	CHANNEL FLOW							1		
ling bit in dick of the construction of the	Naterways & Swamps,	No Channels								
stand Image Image <th< td=""><td>ength, ft</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	ength, ft									
Am of the original of the ori	Slope, ft/ft									
Shassed Waterways/Roadside Ditches										
engh, ft tiope, fth tiope, f										0.0000
idea, fift electry ¹ , fitee c ₁ ² , fr 477 0.000 0.000 small Tributary & Swamp w/Channels 477 0.023 0.001 small Tributary & Swamp w/Channels 477 0.023 0.001 singe, fift bope, fift 0.023 0.042 0.0415 0.0415 argo Tributary 0.042 0.042 0.0415 0.0415 argo Tributary 0.042 0.0415 0.0000 0.0000 argo Tributary 0.042 0.0415 0.0000 0.0000 argo Tributary 0.042 0.0415 0.0000 0.0000 fift 0.042 0.0415 0.0000 0.0000 fift 0.042 0.0415 0.0000 0.0000 fift 0.0000 0.0000 0.0000 0.0000 fift 0.0000 0.0000 0.0000 0.0000 tributary 0.0000 0.0000 0.0000 0.0000 tributary 0.0000 0.0000 0.0000 0.0000 tributary 0.0000 <td></td> <td>adside Ditches</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>		adside Ditches						1		
Biology R Usace 2, hr Control Contro <thcontro< th=""> <thcontrol< th=""></thcontrol<></thcontro<>										
*/ nr 0 0 0.000 mall Tributary & Swamp w/Channels 477 0 0 0 objep. ft/ft 0.023 0 0 0 0 bloch /r, ft/see 3.189 0.042 0 0.0415 arge Tributary 0.042 0.042 0.0415 0.0415 arge Tributary 0.042 0.042 0.000 0.0000 arge Tributary 0.042 0.042 0.0000 0.0000 arge Tributary 0.042 0.042 0.0000 0.0000 Arge Tributary 0.042 0.0415 0.0000 0.0000 Attribute Control of the cont										
Imail Tributary & Swamp w/Channels 477 0.023 0.023 0.023 0.0415 0.024 0.0415 0.00000 0.00000 0.00000<										0.0000
engh, ft 0.023 3.189 0.023 0.023 0.0415 cicolog ¹ , ft/sec 3.189 0.042 0.0415 0.0415 arge Tributary 0.042 0.0415 engh, ft 0.042 0.0415 isope, ft/ft 0.042 0.0415 engh, ft 0.042 0.0415 isope, ft/ft 0.042 0.0415 engh, ft 0.042 0.0415 isope, ft/ft 0.042 0.0000 ft 0.042 0.0000 isope, ft/ft 0.042 0.0000 0.0000 isope, ft/ft 0.0000 <td< td=""><td></td><td>nn w/Channels</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>0.0000</td></td<>		nn w/Channels						1		0.0000
iope, ftht 0.023 0.0415 0.0415 arge Tributary 0.042 0.0415 0.0415 arge Tributary 0.0415 0.0415 0.0000 arge Tributary 0.0415 0.0000 0.0000 diope, ftht 0.02 0.0000 0.0000 Arge Tributary 0.0000 0.0000 0.0000 Calvert 0.0000 0.0000 0.0000 Calvert 0.0000 0.0000 0.0000				477						
leading*, fusion 3.189 0.042 0.0415 arge Tributary 0.0415 0.0415 arge Tributary 0.0415 0.0415 arge Tributary 0.0415 0.0415 arge Tributary 0.0415 0.0415 stope, fuft 0.0415 0.0000 delocity*0; fusion 0 0 0.0000 Asin River 0 0 0.0000 asing tributary 0 0 0.0000 delocity*0; fusion 0 0 0.0000 asing tributary 0 0 0.0000 delocity*1; fusion 0 0 0.0000 asing tributary 0 0 0.0000 duranter, ft (spe, fuft latentings No. 0 0 0 0.0000 duranter ft (spe, fuft latentings No. 0 0 0 0.0000	Slope, ft/ft									
arge Tributary	/elocity ⁹ , ft/sec									
engh, ft iope, ft/ft	t, hr			0.042						0.0415
liope, ft/ft lelocity ¹⁰ , ft/sec <u>i'</u> , ftr liope, ft/ft liope, ft/ft lelocity ¹¹ , ft/sec lelocity ¹¹ , ft/sec lelocity ¹¹ , ft/sec lelocity ¹¹ , ft/sec lelocity ¹² , ft/sec le	Large Tributary									
relocity ¹⁰ , ft/sec ² , hr angth, ft loope, ft/ft loope, ft/ft lo	₋ength, ft									
1/2, hr 1 0.000 Aain River 0.000 Aain River 0.000 angh, ft 0.000 loop, ft/t 0.000 (elocity') ft/sec 0.000 2, hr 0 0.000 Diameter, ft 0.000 rea, ft ² 0 0 0.000 Vetted Perimeter, ft 0.000 0.000 Uydraulic Radius, R, ft 0.000 0.000 endity ft/fsec 0 0 0.000 endity ft/fsec 0 0 0 endity ft/fsec 0 0 0 0 (bop, ft/ft 0 0 0 0.0000 uning's No. 0 0 0 0 endity ft/ft 0 0 0.0000 0	Slope, ft/ft									
Alain River Second										
ength, ft liope, ft/ft lelocity ¹¹ , ft/sec ² , hr Suttert Lutert Lutert Liameter, ft liope, ft/ft liope, ft/ft/ft liope, ft/ft liope, ft/ft liope, ft/ft liope, ft/ft liope, ft/ft liope, ft/ft liope, ft/ft liope, ft/ft liope, ft/ft liope, ft/ft/ft/ft/ft/ft/ft/ft/ft/ft/ft/ft/ft/f										0.0000
liope, ft/ft felocity ¹¹ , ft/sec 2 ² , hr Nameter, ft rea, ft ² Vetted Perimeter, ft lydraulic Radius, R, ft liope, ft/ft Lanning's No. felocity ¹² , ft/sec ength, L, ft 2 ² , hr										
relocity ¹¹ , ft/sec Image: section of the section										
1 ² , hr 0.000 Culvert 0.000 Culvert 0.000 Veted Perimeter, ft rea, f ² Image: the standard stand										
Culvert Diameter, ft rea, ft ² Sector 1 Sector 2 Se										0.0000
Nameler, ft rea, ft ² Vetted Perimeter, ft lydraulic Radius, R, ft lydraulic	Culvert									
rea, ft ² Vetted Perimeter, ft Iydraulic Radius, R, ft ilope, ft/ft tanning's No. felocity ¹² , ft/sec ength, L, ft - ² , hr <u>0.0000</u>	Diameter, ft									
ydraulic Radius, R, ft lope, fu/ft lanning's No. elocity ¹² , ft/sec ength, L, ft ² , hr <u> </u>										
lope, ft/ft anning's No. felocity ¹² , ft/sec anni an anni anni an anni an anni an Anni anni anni anni anni anni anni anni	Vetted Perimeter, ft									
tanning's No. (elocity ¹² , ft/sec ength, L, ft ² , hr <u>0.0000</u>	lydraulic Radius, R, ft									
relocity ¹² , ft/Sec ength, L, ft 2 ² , hr 0.0000	Slope, ft/ft									
ength, L, ft ² , hr O.0000	fanning's No.									
2 [°] , hr 0.0000										
Time of Concentration, T _e , hr: 0.945	² , hr									
								Time of C	oncentration, T _c , hr:	0.945

Subcatchme	ent ID:	Pos	t-Development	2S					
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
	SF-1	0.04							
lanning's No. ength, ft	0.240 85	0.24 15							
_{2,} in	3.15	3.2							
lope, ft/ft	0.007	0.053							
t ¹ , hr	0.319	0.036							0.3549
HALLOW CONCENTR	ATED FLOW							· · · · ·	
aved		SCF-2	SCF-3						
ength, ft									
lope, ft/ft									
elocity ³ , ft/sec									
² , hr									0.0000
npaved Surfaces & Gr	assed Waterways	5							
ength, ft									
lope, ft/ft elocity ⁴ , ft/sec									
² , hr									0.0000
hort-Grass Pasture	SCF-1								0.0000
ength, ft			537		89				
ilope, ft/ft			0.011		0.018				
′elocity⁵, ft/sec			0.7316		0.9217				
t, hr			0.204		0.027				0.2307
Voodland									
ength, ft				21					
lope, ft/ft				0.034					
elocity ⁶ , ft/sec				0.9317					
², hr				0.006					0.0063
HANNEL FLOW									
Vaterways & Swamps,	No Channels								
ength, ft									
lope, ft/ft									
elocity ⁷ , ft/sec									
² , hr									0.0000
Grassed Waterways/Ro	adside Ditches								
ength, ft									
lope, ft/ft 'elocity ⁸ , ft/sec									
t ² , hr									0.0000
Small Tributary & Swan	an w/Channole								0.0000
ength, ft	ip w/channels								
ilope, ft/ft									
elocity ⁹ , ft/sec									
² hr									0.0000
arge Tributary									
ength, ft									
lope, ft/ft									
/elocity ¹⁰ , ft/sec									
², hr									0.0000
lain River									
ength, ft									
lope, ft/ft									
elocity ¹¹ , ft/sec									
² hr									0.0000
ulvert					1				
iameter, ft									
rea, ft ²									
/etted Perimeter, ft									
ydraulic Radius, R, ft									
lope, ft/ft									
anning's No.									
elocity ¹² , ft/sec									
ength, L, ft ² _, hr									0.0000
, 111					1				0.0000
							Time of C	oncentration, T _c , hr:	0.592

Subcatchme	nt ID:	Po	st-Development	3S					
	Seg 1	Seg 2	Seg 3	Seg 4	Seg 5	Seg 6	Seg 7	Seg 8	
SHEET FLOW	SF-1								
Manning's No.	0.400 100								
Length, ft P _{2,} in	3.15								
Slope, ft/ft	0.008								
T _t ¹ , hr	0.520								0.5204
SHALLOW CONCENTRA									0.0201
Paved		SCF-2	SCF-3						
Length, ft									
Slope, ft/ft									
Velocity ³ , ft/sec									
T ² , hr									0.0000
Unpaved Surfaces & Gra	assed Waterways	s							
Length, ft			13						
Slope, ft/ft			0.004						
Velocity ⁴ , ft/sec			1.000619213						
T _t ² , hr			0.004						0.0036
Short-Grass Pasture	SCF-1								
Length, ft		78							
Slope, ft/ft Velocity ⁵ , ft/sec		0.001 0.2493							
T _t ² , hr		0.2493							0.0869
Woodland		0.001							0.0000
Length, ft				54					
Slope, ft/ft				0.034					
Velocity ⁶ , ft/sec				0.9314					
T _t ² , hr				0.016					0.0161
CHANNEL FLOW									
Waterways & Swamps, I	No Channels								
Length, ft									
Slope, ft/ft									
Velocity ⁷ , ft/sec									
T _t ² , hr									0.0000
Grassed Waterways/Roa	adside Ditches	1				1	11		
Length, ft									
Slope, ft/ft									
Velocity ⁸ , ft/sec T _t ² , hr									
									0.0000
Small Tributary & Swam	p w/Channels								
Length, ft Slope, ft/ft									
Velocity ⁹ , ft/sec									
T _t ² hr									0.0000
Large Tributary									0.0000
Length, ft									
Slope, ft/ft									
Velocity ¹⁰ , ft/sec									
T _t ² , hr									0.0000
Main River							·		
Length, ft									
Slope, ft/ft									
Velocity ¹¹ , ft/sec									
T _t ² , hr									0.0000
Culvert									
Diameter, ft									
Area, ft ²									
Wetted Perimeter, ft									
Hydraulic Radius, R, ft									
Slope, ft/ft									
/lanning's No.									
	1								
/elocity12, ft/sec									
/elocity ¹² , ft/sec _ength, L, ft									0.0000
/elocity12, ft/sec						1		oncentration, T _c , hr:	0.0000

Appendix M – SWPPP Amendments

The Owner/Operator shall have a Qualified Professional amend the SWPPP when one or more of the following occur:

- There is a significant change in design, construction, operation, or maintenance which may have a significant effect on the potential for the discharge of pollutants to the waters of the United States and which has not otherwise been addressed in the SWPPP; or
- The SWPPP proves to be ineffective in:
 - Eliminating or significantly minimizing pollutants from sources identified in the SWPPP and as required by this permit; or
 - Achieving the general objectives of controlling pollutants in stormwater discharges from permitted construction activity; and

Additionally, the SWPPP shall be amended to identify any new Contractor or Subcontractor that will implement any measure of the SWPPP.

The following information should be documented in this section:

- Dates when major grading activities occur;
- Dates when construction activities temporarily or permanently cease on a portion of the Project Site; and
- Dates when stabilization measures (temporary and permanent) are initiated.

Appendix N – SWPPP Inspection Reports

- Blank SWPPP Inspection Form -

- Completed SWPPP Inspection Reports -

Appendix N – Blank SWPPP Inspection Form

General Project Information									
Project Name:									
SPDES Permit Number:				Type of Construction					
Date of Inspection:				Activities Being					
Inspector's Name:				Completed:					
Time On Site:				Inspection Type:					
Time Off Site:				inspection Type.					
General Project Notes:									
SWPPP Amendment	□ Yes	□ No	lf yes,						
Required:			describe:						

Weather Information									
Has there been a storm event since the last inspection?	⊠ Yes	□ No							
If yes, what was the approx. amount of precipitation (inches) since the last									
inspection:									
Weather conditions at the time of inspection?	emperature:	°F							
□ Clear □ Cloudy □ Rain □ Sleet □ Snow □ Fog □	High Winds								
Does the Project Site discharge to natural surface waterbodies located within	□ Yes	□ No							
or immediately adjacent to the Project area?									
If yes, describe:									
Were there any discharges observed at the time of inspection?	□ Yes	□ No							
If yes, were sediment laden discharges observed?	□ Yes	□ No							
Describe:									
If yes, was erosion or sedimentation observed at the discharge location?	□ Yes	□ No							
Describe:									
Soil Condition:									
Were areas of soil disturbance observed at the time of inspection?	□ Yes	□ No							
If yes, describe:									

Maintaining Water Quality

Water Quality Observations	Yes	No	N/A
Is there an increase in turbidity causing a substantial visual contrast to natural conditions?			
Is there residue from oil and floating substances, visible oil film, or grease or globules?			
Are all disturbances within the approved limits, as outlined on the plans?			
Have receiving waterbodies and/or wetland been impacted by the Project?			
Are the concrete washout facilities located a minimum of 100 feet from sensitive areas and properly maintained?			
Comments:			

General Housekeeping

Site Conditions	Yes	No	N/A
Is construction site litter and debris appropriately managed?			
Are facilities and equipment necessary for implementation of erosion and sediment controls in working and/or properly maintained?			
Is construction impacting adjacent properties?			
Is dust adequately controlled?			
Comments:			

Runoff Control Practices

Temporary Stream Crossings	Yes	No	N/A
Are the maximum necessary diameter pipes installed to span stream without dredging?			
Is non-woven geotextile fabric installed beneath the approaches?			
Is fill composed of aggregate (no earthen or soil material)?			
Is the rock on approaches clean enough to remove mud/sediment from vehicles and prevent sediment from entering the stream during high flows?			
Comments:			

Excavation Dewatering	Yes	No	N/A
Are upstream and downstream berms (sandbags, inflatable dams, etc.) are installed per the Construction Drawings?			
Is clean water from the upstream pool being pumped to the downstream pool?			
Is sediment laden water from the work area being discharged to a sediment trapping device?			
Is the water discharging from the sediment trapping device clear and free of sediment?			
Does the constructed upstream berm have a minimum of one-foot freeboard?			
Comments:			

Yes	No	N/A

Interceptor Dikes and Swales	Yes	No	N/A
Is the dike/swale installed per the Construction Drawings?			
Has the dike/swale been stabilized by geotextile fabric, seed, and/or mulch?			
Was erosion observed within the dike/swale?			
Is sediment-laden runoff directed to a sediment trapping device?			
Comments:			

Stone Check Dam(s)	Yes	No	N/A
Are the check dams in good condition (rocks in place and no ponding behind the dams)?			
Has geotextile fabric been placed beneath the rock fill?			
Was sediment accumulation greater than 50% of the design capacity?			
Was erosion observed within the channel?			
Comments:			

Rock Outlet Protection	Yes	No	N/A
Is the rock outlet protection installed per approved plans?			
Was the outlet protection installed concurrently with pipe installation?			
Have the rocks been displaced?			
Is the sediment accumulation 0% of the design capacity?			
Comments:		-	-

Soil Stabilization

Topsoil and Spoil Stockpiles	Yes	No	N/A
Are stockpiles properly stabilized and contained?			
Are sediment control installed at the toe of the slope?			
Are idle soil stockpiles are stabilized with vegetation and/or mulch?			
Comments:			

Revegetation	Yes	No	N/A
Has temporary seed and mulch been applied to idle areas?			
Has a minimum of 4 inches of topsoil been applied under permanent seeding areas?			
Comments:			

Sediment Control Practices

Stabilized Construction Entrance(s)	Yes	No	N/A
Is the entrance installed per the Construction Drawings?			
Is the stone clean enough to effectively remove mud/sediment from vehicle tires?			
Does all traffic enter and exit the site at the stabilized construction entrance(s)?			
Is adequate drainage provided to prevent ponding at the entrance(s)?			
Comments:			

Linear Sediment Control Barriers	Yes	No	N/A
Are the sediment controls installed along the contour, 10 feet from toe of slope and not within conveyance channels?			
Are silt fence joints constructed by wrapping the two ends together for continuous support?			
Is the silt fence fabric is buried a minimum of 6 inches?			
Are the posts stable and the fabric is tight and without rips/frayed areas?			
Does the compost filter sock have good contact with the soil?			
Is the sediment accumulation 0% of the design capacity?			
Comments:			

TRC

Storm Drain Inlet Protection	Yes	No	N/A
Is the inlet protection installed in accordance with the Construction Drawings?			
Is the inlet protection structurally sound?			
Are the posts stable and the fabric is tight and without rips/frayed areas?			
Is the sediment accumulation greater than 50% of the design capacity?			
Comments:			

Temporary Sediment Basin	Yes	No	N/A
Is the basin and outlet structure constructed per the Construction Drawings?			
Are the basin side slopes stabilized?			
Was the drainage structure flushed and basin surface restored upon removal of the sediment basin facility?			
Is the sediment basin dewatering at an appropriate rate?			
Is the sediment accumulation greater than 50% of the design capacity?			
Comments:			

Temporary Sediment Trap	Yes	No	N/A
Is the outlet structure constructed per the Construction Drawings?			
Has geotextile fabric been placed beneath the rock fill?			
Are the sediment trap slopes and disturbed areas are stabilized?			
Is the sediment accumulation greater than 50% of the design capacity?			
Comments:			

<u>Note:</u> Not all erosion and sediment control practices are included in this listing. Add additional pages to this list as required by site specific design. All practices shall be maintained in accordance with their respective standards.

Qualified Inspector

Qualified Inspector Signature

Qualified Professional

Qualified Professional Signature

The above signed acknowledges that, to the best of his/her knowledge, all information provided in this report is accurate and complete. If there are any questions, comments, or concerns regarding the contents of this report, feel free to contact Inspector's Name at XXX-XXX or email address.

Sketch Map

Legend:	Area of Active Soil Disturbance	Area has Achieved Temporary Stabilization
	Area of Inactive Soil Disturbance	Area has Achieved Final Stabilization

Inspection Photographs

2

3	4

5	6

7	8

9	10

11	12

Appendix N – Completed SWPPP Inspection Reports